
Technical Architecture Analyses of Major Tech
Companies
Table of Contents
- Amazon
- Netflix
- Meta (Facebook)
- Google
- Microsoft Azure
- Uber
- Airbnb
- Twitter
- LinkedIn
- PayPal
- Stripe
- Shopify
- Slack
- Salesforce
- Spotify
- Cloudflare
- Pinterest
- Alibaba
- OpenAI
- Comparative Analysis
- Honorable Mentions

Amazon

System Overview

Amazon’s core digital products span a global e-commerce platform (Amazon.com) and a dominant
cloud services suite (AWS). The retail site supports a vast online marketplace, streaming (Prime Video),
and devices (Alexa), all at massive scale. Primary architectural goals include extreme scalability to
handle peak traffic (e.g. holiday sales), low latency for a smooth shopping experience, and high
resilience to avoid downtime during critical business periods.

High-Level Architecture

Amazon transitioned early from a monolithic application to a service-oriented (and later
microservices) architecture to enable independent team ownership and faster innovation .
Hundreds of small services now communicate via well-defined APIs – Amazon’s famous “internal API
mandate” ensured every team exposes services so others can integrate without tight coupling. This
API-first approach (legend says it was mandated by Jeff Bezos) set the stage for what we now call
microservices . The architecture is largely event-driven; many processes communicate
asynchronously (e.g. order events propagate to inventory, fulfillment, etc.). For external interfaces,
Amazon uses RESTful APIs extensively (e.g. for AWS services), and internally it mixes REST and high-

1 2

3

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=Amazon%20was%20running%20into%20the,in%20the%20same%20code%20base
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=The%20solution%3A%20move%20to%20a,not%20microservices
https://blog.dreamfactory.com/microservices-examples#:~:text=Amazon%E2%80%99s%20%E2%80%9Cservice,Without%20its%20transition%20to

performance RPC. Notably, Amazon’s early move to services directly influenced the creation of AWS and
internal tools like Apollo (deployment engine) . The result is a highly decoupled design optimized for
independent development by “two-pizza teams.”

Technology Stack

Backend: Predominantly Java and C++ services, with some uses of other languages as needed. The
retail site was historically built in C++ and Java running on Linux, and Amazon continues to heavily use
the JVM for service development. Frontend: a mix of server-rendered pages and dynamic content;
technologies vary by team (the Amazon site uses HTML/JS with templating engines, newer segments
may use Node.js or React for specific features). Datastores: Amazon famously developed DynamoDB
(NoSQL key-value) to solve scalability issues of relational databases in the early 2000s; today retail
services use a variety of storage solutions. They migrated completely off Oracle by 2019, moving ~75 PB
of data from 7,500 Oracle databases to AWS databases like DynamoDB, Amazon Aurora (MySQL/
Postgres), and Redshift for analytics . Many services rely on Amazon S3 for durable object
storage (e.g. images). Caching: A massive tier of Memcached/Redis clusters (exposed via AWS
ElastiCache) provides low-latency reads for hot data. For example, product catalog and user session
data are heavily cached. Messaging & Streaming: Amazon uses event queues (e.g. Amazon SQS and
SNS) and streaming systems like Kinesis for decoupling. These enable an event-driven architecture (e.g.
an order placement event triggers downstream updates asynchronously). DevOps & Infra: Everything
runs on AWS infrastructure (Amazon is the biggest AWS customer). They employ sophisticated CI/CD
with internal tools (Apollo for deployments) to deploy services frequently. Infrastructure is managed
as code; Amazon was an early adopter of automated, frequent deployments. Observability: Amazon
CloudWatch and custom tooling handle monitoring. The sheer scale required building tools for
distributed tracing and fault isolation given thousands of services. Hosting: The architecture spans
multiple AWS regions for resilience, but often with one primary region per service and cross-region
redundancy for failover. Amazon’s global network and edge (CloudFront CDN) are used to accelerate
content delivery.

Data Architecture

Amazon’s data architecture is equally large-scale. Data pipelines: Clickstream events, transactions, and
operational logs are streamed into data lakes on S3. Amazon uses distributed frameworks (Hadoop/
Spark on EMR, and AWS Glue/Airflow for ETL orchestration) to transform and analyze this data. Real-
time processing is enabled via Kinesis streams feeding into analytics or alerting systems. Warehousing
& Analytics: They use Amazon Redshift and Aurora for analytical queries, along with internal tools. For
example, sales and inventory data flows into Redshift for business analysts. Machine Learning:
Amazon pioneered use of ML for recommendations (“Customers who bought X also bought Y”).
Internally, they have a robust ML platform: data scientists use the centralized data lake (on S3) and tools
like Amazon SageMaker or custom frameworks to train models (e.g. for search ranking, supply chain
optimizations, Alexa’s AI). These models are deployed as services – e.g. personalization services –
accessible via APIs by the retail site . The scale of data (multiple petabytes) required automating data
governance and quality controls to ensure reliable training and analytics.

Scalability and Resilience

Scaling Strategies: Amazon’s architecture is designed for horizontal scale-out. Services are stateless
where possible, behind fleets of load-balanced instances. They scale horizontally on AWS EC2 instances
(or containers) across Auto Scaling groups. For example, the retail website runs across thousands of
servers per region, adding capacity automatically during traffic surges. Data stores are partitioned (e.g.
DynamoDB tables split on keys, Aurora with read replicas) to handle throughput. Amazon even

3

4 5

6

1

2

https://blog.dreamfactory.com/microservices-examples#:~:text=Amazon%E2%80%99s%20%E2%80%9Cservice,Without%20its%20transition%20to
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/#:~:text=We%20migrated%2075%20petabytes%20of,and%20realized%20the%20following%20results
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/#:~:text=databases%20to%20multiple%20AWS%20database,This%20includes%20complex
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=,Amazon%E2%80%99s%20Deployment%20Engine
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=Amazon%20was%20running%20into%20the,in%20the%20same%20code%20base

optimizes at the edge – heavily caching product pages and using CDN edge locations to reduce load on
origin servers. Resilience: Redundancy is built at every level. Services run across multiple availability
zones within a region, so an AZ outage doesn’t take down the service. Many critical systems (like order
processing) are also replicated to a secondary AWS region as a DR measure. They practice fault isolation
– if one microservice fails, upstream callers use fallback logic or degrade gracefully (e.g. if the
recommendation service is down, the site may simply not show recommendations, avoiding total page
failure). Load balancing is everywhere: from global DNS load balancing between regions, to ELB/ALB at
each service tier. Failover: Amazon can perform regional failovers for the retail site; for instance, if a
primary region has issues, traffic can be shifted to a healthy region (with DNS and warm standby
services). They conduct “GameDay” exercises to rehearse disaster recovery scenarios. Amazon was also
an early adopter of chaos testing – injecting failures to ensure the system tolerates them (inspired by
practices like Netflix’s Chaos Monkey). Data resilience: Customer and order data is synchronously
replicated to multiple storage nodes (e.g. DynamoDB replicates across 3 AZs, Aurora writes quorum
across AZs). Data is also backed up to durable storage (S3) for point-in-time recovery. This multi-AZ,
multi-region design allowed Amazon’s consumer business to achieve extremely high availability and
durability for transactions.

Security Architecture

Security is paramount given payments and personal data. Identity & Access Management: Amazon
employs a robust IAM system. Customer-facing logins go through Amazon’s centralized auth service
(supporting MFA, etc.). Internally, every service call is authenticated and authorized – they issue internal
credentials/tokens for service-to-service communication. Amazon’s API Gateway and internal service
mesh enforce authentication and rate limiting. OAuth is used for account linking with external partners.
Secure Communication: All external traffic is HTTPS (TLS) secured. Within AWS, service calls use
authenticated channels; many are TLS even internally. For instance, microservices might use mutual TLS
or signed requests (as is common with AWS API calls). Amazon Virtual Private Cloud (VPC) isolates
network segments, and sensitive services operate in restricted subnets with strict security groups.
Encryption: Customer sensitive data (passwords, credit cards) is encrypted at rest (often using AWS
KMS-managed keys). Amazon’s Payment services are PCI-DSS compliant, storing minimal card data and
offloading a lot to tokenization. Data in transit is encrypted (TLS), including between data centers.
Systems like S3 encrypt all objects by default. Compliance: Amazon complies with a gamut of
regulations: GDPR for customer data privacy in the EU (with capabilities for data deletion, exporting,
consent tracking), PCI DSS for payment data, and various regional consumer protection laws. They have
dedicated governance teams and automated monitoring to ensure compliance (e.g. access logs for
customer data are audited). Security architecture also includes advanced threat detection – AWS
GuardDuty and internal tools watch for anomalies. IAM for AWS: On the AWS side, Amazon’s internal
teams use fine-grained IAM roles for infrastructure – every application component has least-privilege
access (a practice external AWS customers are encouraged to follow as well).

Evolution and Tradeoffs

Amazon’s architecture has continuously evolved through key inflection points. Early on, the move from a
giant monolith to SOA was a game-changer that solved the “too many cooks” problem of a growing
codebase . This enabled Amazon’s explosive growth in features and teams. However, the
microservices journey introduced complexity tradeoffs – coordination, debugging, and operational
overhead increased with hundreds of services. Amazon addressed this with investments in tooling
(deployment automation, monitoring) and by enforcing global standards for API quality and
backwards compatibility. A notable lesson came recently from Amazon Prime Video’s team: they re-
evaluated an overly complex microservices design for video monitoring and decided to consolidate
into a monolith for that subsystem, achieving 90% cost reduction and higher performance .

1 2

7 8

3

https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=Amazon%20was%20running%20into%20the,in%20the%20same%20code%20base
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=The%20solution%3A%20move%20to%20a,not%20microservices
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Prime%20Video%2C%20Amazon%E2%80%99s%20video%20streaming,decided%20to%20consolidate%20all%20of
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=The%20problem%20of%20high%20operational,avoid%20hitting%20vertical%20scaling%20limits

This highlighted that microservices are not a silver bullet for every scenario – in some cases, a well-
structured monolith can be more efficient . Amazon’s CTO Werner Vogels emphasizes “there are
few one-way doors” and that architecture should be rethought with each order-of-magnitude growth

. Over the years, Amazon also shifted technologies: e.g. replacing Oracle with cloud-native
databases to eliminate scaling bottlenecks . They learned to manage the “microservices death
star” – ensuring the web of service dependencies doesn’t become a single point of failure. Techniques
like bulkhead isolation, circuit breakers, and caching help prevent cascading failures. In summary,
Amazon’s experience shows the importance of continuously balancing service granularity vs.
complexity, investing in internal platforms to support microservices, and being willing to revisit
assumptions (even reversing course on architecture decisions) in pursuit of better scalability and
efficiency.

Netflix

System Overview

Netflix is the world’s leading streaming media service, delivering on-demand video to over 220 million
subscribers worldwide. Its core product is the Netflix streaming platform (web, mobile, TV apps) which
serves movies and TV shows instantly. Netflix’s primary architectural goals are massive scalability
(handling millions of concurrent streams), low latency (minimal startup/buffering time for videos), and
resilience (the service must remain highly available globally, often achieving >99.99% uptime, as
downtime directly impacts subscribers and brand trust).

High-Level Architecture

Netflix pioneered the modern microservices architecture model. Around 2009–2012, they refactored a
monolithic DVD-rental system into a cloud-native microservices ecosystem . The architecture is
fully distributed, composed of hundreds of microservices each handling a specific capability (user
account service, recommendations service, catalog service, streaming control service, etc.). These
services communicate via lightweight protocols – predominantly RESTful HTTP for client-facing APIs
and service-to-service, and increasingly gRPC for internal high-performance calls. Netflix popularized
various design patterns: an API Gateway (the “Edge API”) sits in front of microservices to aggregate
data for device-specific needs, and circuit breakers (via their Hystrix library) to gracefully degrade
when a dependency is failing. The architecture is event-driven in parts; for example, they use a publish-
subscribe model for updates like viewing history (so that multiple services – recommendations,
continue-watching list, etc. – get notified). Netflix’s system is highly asynchronous to maximize
throughput: clients often receive data by calling the API Gateway which fan-outs to many backend
services concurrently. Notably, Netflix built a culture of resilience through patterns like bulkheads,
fallback logic, and Chaos Engineering (intentionally introducing failures). By 2013, their API layer was
handling 2 billion+ edge API requests per day managed by over 500 microservices, and by 2017 the
architecture grew to over 700 loosely coupled microservices . This extreme scale of microservices
gave Netflix agility but required strong governance of standards and tooling.

Technology Stack

Backend: Netflix’s services run primarily on the Java Virtual Machine. They wrote many components in
Java, and open-sourced a suite of libraries (Netflix OSS) for microservice development – e.g. Hystrix
(circuit breaker), Ribbon (client-side load balancer), Eureka (service discovery), and Archaius (config).
They also use some Node.js and Python for certain services (Netflix’s data and ML teams use Python).
For high-performance needs like encryption or media packing, some services use C++ native libraries.

9 10

11

12

13 14

15

4

https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Horse%E2%80%99s%20mouth%3F%20Marcin%20Kolny%2C%20a,scale%2C%20resilience%2C%20and%20reduce%20costs%E2%80%9D
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=We%20realized%20that%20distributed%20approach,a%20different%20subset%20of%20detectors
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Jumping%20in%2C%20Amazon%20CTO%20Dr,mee%20eens%E2%80%94%E2%80%9CMonoliths%20are%20not%20dinosaurs%E2%80%9D
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/#:~:text=databases%20to%20multiple%20AWS%20database,and%20realized%20the%20following%20results
https://blog.dreamfactory.com/microservices-examples#:~:text=In%202009%2C%20Netflix%20began%20the,Netflix%20spent%20the%20following%20two
https://blog.dreamfactory.com/microservices-examples#:~:text=match%20at%20L365%20Refactoring%20to,architecture%20consisted%20of%20over%20700
https://blog.dreamfactory.com/microservices-examples#:~:text=Refactoring%20to%20microservices%20allowed%20Netflix,and%20it%20continues%20to%20grow

Cloud Infrastructure: Netflix runs on AWS exclusively, leveraging EC2 for compute. They famously
completed a cloud migration in 2012, shutting down their last own data center . On AWS, they use an
automation toolset: Asgard (in-house) or Spinnaker for continuous delivery, and Titus (their open-
source container orchestration platform) to schedule and manage containers on EC2. Datastores:
Netflix is a heavy user of NoSQL. They deploy large Cassandra clusters to store subscriber data, viewing
history, etc., because Cassandra’s distributed design suits their always-on, global needs. For example,
every viewing record is written to Cassandra for reliability. They also utilize Amazon DynamoDB for
certain key-value workloads, and Redis (EVCache is Netflix’s fork of memcached/SSD hybrid) for very
fast caching of frequently accessed data (like user personalization info). For analytics and
recommendation model data, they use ElasticSearch and Apache Hadoop/Spark (on S3) offline. Media
Delivery: Video files are stored in AWS S3 and delivered via Netflix’s own CDN called Open Connect (a
network of edge caching servers Netflix deploys at ISPs). The control plane (what video to play,
authorization) goes through Netflix services in AWS, but the video content flows from the nearest Open
Connect appliance to the user. Frontend: Netflix’s client applications (TV, mobile, web) are native or JS
apps that interface with the backend via a well-defined API (originally a REST API, now a dynamic API
orchestrated by BFFs – Backends for Frontends – possibly using GraphQL internally to optimize data
fetching for different UIs). DevOps: Netflix is known for an engineering culture of automation. They
have fully automated CI/CD; many services deploy code daily. Testing and canary releases are heavily
used – their Simian Army (Chaos Monkey, Chaos Gorilla) randomly kills instances or even whole
clusters to verify auto-healing and resilience. Observability: They built Atlas, a telemetry platform, to
handle millions of metrics streams in real time. Logging is aggregated and analyzed via tools like Mantis
(stream processing) and Llama. Tracing is custom (and now leveraging OpenTelemetry standards).
Infrastructure as Code: All environments are scripted – they can recreate their entire stack via code on
AWS if needed. This allowed them to do multi-region active-active deployments easily.

Data Architecture

Netflix’s data architecture addresses both real-time and big data needs. Streaming Data Pipelines:
Netflix processes a colossal amount of events – every play, pause, error, UI interaction. These events
flow into a unified Kafka pipeline (they process billions of messages per day). A system called Keystone
(and later Mantis) processes events in real-time for operational analytics (e.g. monitoring QoS on
streams) and near-real-time personalization. Batch Data & Warehousing: All events land in an S3-
based data lake, where Netflix’s Big Data platform (built on Apache Spark, Presto, and Hive) crunches
data. Analysts and algorithms use this to derive insights like which shows are trending, or to train
recommendation models. Netflix uses Presto (distributed SQL query engine) for interactive queries on
S3 data, enabling internal users to explore data with low latency. Recommendation/ML
Infrastructure: Netflix has a sophisticated ML pipeline – they collect viewing histories, user
interactions, content metadata, etc., and use this to train algorithms for content recommendations,
personalization (e.g. choosing thumbnails), and even content production decisions. This is done using
offline Spark jobs and sometimes online models. Models are then deployed via microservices that the
product calls (for example, when you open Netflix, a Personalization Service calls a trained model to get
your top picks). They also leverage AB testing heavily: their data platform is geared to support fast
experiment analysis (millions of members are often in various test cohorts). Metadata and Search:
Netflix maintains a metadata graph of videos, actors, genres. That data is indexed in ElasticSearch to
allow quick searching and also powering “similar content” features. A service called “Cassie” (built on
Cassandra) keeps track of which content is available in which regions and which CDN nodes, ensuring
the streaming service directs users properly. Data Governance: Given global privacy laws, Netflix has
data architecture to delete or anonymize user data when required (especially after GDPR, they
implemented pipelines to handle “right to be forgotten”). In summary, Netflix’s data architecture is a
hybrid of streaming and batch, all built to continuously learn from user behavior and feed
improvements back into the product quickly.

13

5

https://blog.dreamfactory.com/microservices-examples#:~:text=In%202009%2C%20Netflix%20began%20the,Netflix%20spent%20the%20following%20two

Scalability and Resilience

Scaling Strategies: Netflix’s entire architecture is built to scale horizontally. On the stateless tier, each
microservice runs in an Auto Scaling Group on AWS. When load increases (say a new series drops
causing traffic spike), metrics trigger scaling policies to launch more EC2 instances. Conversely, they
scale down in off-peak times. They also utilize AWS features like Amazon RDS for some relational needs
but more often prefer no-SQL that scales out easily. They design services to be stateless so any instance
can handle any request (with state like session info stored in caches or passed in tokens). For stateful
systems like Cassandra, Netflix uses careful data partitioning and cluster setups per region to handle
growth (they regularly add nodes to clusters as data volume grows, using Cassandra’s scale-out
capability). Global Load Balancing: Netflix operates across multiple AWS regions (at least three for
streaming: e.g. US East, US West, and EU). They use DNS-based load balancing (via Amazon Route 53)
and client logic to direct users to the closest or healthiest region. If an entire region fails, clients can
reconnect to another region (the apps have retry and fallback logic to handle this). Resilience
Techniques: Netflix is famous for its Chaos Monkey which randomly terminates instances in
production to verify the system self-heals . This ensures no single service instance failure
impacts users. They also have Chaos Gorilla to simulate an AZ outage, and Chaos Kong to simulate a
whole region outage – thus testing their multi-region resiliency. Each microservice is built with timeouts
and fallbacks – e.g. if the recommendations service is down, the UI will degrade gently (maybe show
popular content instead of personalized picks). Circuit Breakers: Through Hystrix (now succeeded by
resilience4j), if a downstream service is failing or slow, Netflix services will “open” the circuit and stop
calling it for a while, using defaults. This prevents cascading failures where one slow service could back
up dozens of others . Bulkheads: Services and threads are isolated so that issues in one area
(say a slow external API call) don’t exhaust all resources. Auto Healing: Netflix’s platform automatically
replaces failed instances. They treat servers as ephemeral; if one has issues, it’s quicker to replace it
(Phoenix server philosophy). Disaster Recovery: Netflix can shift traffic out of a region if needed. They
practice evacuations – for example, when AWS had a major outage in a region, Netflix was able to
redirect users to other regions to mitigate impact. They keep data asynchronously replicated across
regions so that critical user data (like recently watched progress) eventually becomes available even if a
region goes down. However, they balance this: certain data (like your profile) is multi-region, while
heavy data (like the actual video files) is served via the CDN which is also globally distributed and
redundant. Performance: To ensure low latency, Netflix uses techniques like maintaining long-lived
connections (for streaming control), content caching at edges, and latency-based routing. They closely
monitor playback QoS metrics (startup time, rebuffer rates) and will scale or re-route proactively if
metrics degrade.

Security Architecture

Identity & Access: Netflix’s customer-facing auth uses its own OAuth 2.0 based system (users log in
with email/password, optionally with MFA for new devices). They issue JWT tokens for clients to call APIs
securely over HTTPS. Internally, each microservice authenticates requests coming from others – Netflix
uses mutual TLS and service certificates, and has an internal OAuth-like system for service-to-service
auth. They built LEMUR, an open-source certificate management framework, to handle service
identities. Data Privacy: While not handling payments (except the subscription billing, which is
outsourced to a payment gateway), Netflix still secures personal data (viewing history is sensitive under
privacy laws). All personal data is encrypted at rest (they leverage AWS KMS). Communication Security:
All API traffic from apps to backend is encrypted via TLS. Within AWS, Netflix also secures service
communication; though operating in VPCs, they often use TLS internally for customer data in transit.
They have strict firewall rules (security groups) to limit which services can talk to which. Infrastructure
Security: Netflix uses a “Zero Trust” posture internally – no one can directly SSH to a box; engineers use
a bastion and need proper IAM roles. They continuously patch and update base AMIs to minimize

16 17

18 19

6

https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Is%20this%20an%20Amazon%20PR,can%E2%80%99t%20make%20sense%20of%20serverless%E2%80%9D
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=context%2C%20and%20wreaked%20havoc%20once,many%20times%20you%20kill%20them
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=%E2%80%9C,was%20adopted%20outside%20its%20original
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=application%20architectures,many%20times%20you%20kill%20them

vulnerabilities. Compliance: Netflix must abide by GDPR and other regional laws. They provide user
data download and deletion on request. Their data retention policies are enforced by data pipelines (for
instance, a user’s personal identifiers can be purged from analytical logs after a period). They don’t have
the same level of PCI scope (since they don’t process raw credit cards on their own servers – those go to
payment providers), but they maintain SOC 2 compliance for their cloud operations. DRM & Content
Security: A unique aspect of Netflix’s security is protecting content. The architecture includes a DRM
license service which ensures streams are decrypted only on authorized devices. This involves secure
key exchange between Netflix license servers and the client playback device. All content files on CDN
are encrypted, and licenses are issued per playback session after user authentication and device
validation. Monitoring & Incident Response: Netflix security teams leverage the rich logging – they
monitor unusual API usage patterns (possible credential stuffing or token abuse) and have automation
to lock accounts or require re-auth if something looks suspicious. They also participate in industry
security initiatives and have a bug bounty program. In summary, Netflix’s security architecture is about
protecting a massive distributed system with a strong emphasis on secure by default (everything
encrypted, every call authenticated) and leveraging the cloud’s capabilities to do so consistently.

Evolution and Tradeoffs

Netflix’s architecture evolution is a case study in cloud-native transformation. Monolith to
Microservices: In 2008, a major database corruption took their DVD rental system offline for days .
This failure catalyzed their decision to migrate to AWS and redesign for high-availability. By breaking the
monolith by functionality and moving to microservices, Netflix achieved enormous scalability and
improved uptime . The tradeoff was the complexity of managing a microservice ecosystem so
early (2010–2012). They invested in creating their own frameworks and tooling (Netflix OSS) to manage
this complexity, essentially pioneering microservices at a time when cloud tooling was immature. This
was a heavy lift – they had to implement service discovery, client load balancing, etc., themselves. Over
time, community solutions (like Kubernetes, Envoy) have superseded some Netflix-specific tools, and
Netflix has embraced those where beneficial. Resilience Engineering: Netflix’s culture of chaos testing
was an innovative shift that had tradeoffs – intentionally causing incidents in production required
strong buy-in from engineering and management, but it ultimately made the system far more robust. It
taught them exactly how and where to bolster fallback mechanisms. A lesson learned was the
importance of fallback content – e.g., if the personalized ranking fails, show a generic list, but never
error out the page. They also learned to avoid tight coupling: one infamous incident in early days was
an outage caused by an overloaded dependency taking down the entire sign-in flow. Since then, they
religiously ensure no single service can easily cascade failure to others (using circuit breakers, timeouts
by default). Performance vs. Consistency: Netflix chose eventual consistency in many places to favor
uptime and performance. For instance, they might allow slightly stale data on a user’s “continue
watching” list if it means the page loads quickly from a cache, under the assumption that background
processes will catch up eventually. This is a conscious architectural tradeoff they manage by carefully
identifying which data can be slightly stale and which cannot (payments or entitlement data must be
strongly consistent, viewing history can be eventually consistent). Polyglot where needed: While
standardizing on Java was useful, Netflix allowed different stacks for specific needs (Node.js for the UI
layer in some cases to facilitate server-side rendering, Python for data science). They had to ensure
interoperability (hence the need for common REST/gRPC interfaces). Continuous Evolution: In recent
years, Netflix has evolved parts of their architecture – e.g. adopting Envoy proxy as a front door
(replacing some Zuul gateway functionality) for better resilience and traffic control, and using GraphQL
internally for device-specific data fetching to reduce over-fetching on mobile devices. They also
migrated from Hystrix (now deprecated) to newer resilience libraries or baked features into service
mesh. A notable tradeoff for Netflix was cost vs. availability: running active-active in multiple regions
doubles infrastructure cost, but they deemed it necessary for their availability target. In 2021, they even
explored reducing costs by optimizing microservices (e.g., packing more functions into one process

20

13 14

7

https://blog.dreamfactory.com/microservices-examples#:~:text=According%20to%20a%20Netflix%20vice,president
https://blog.dreamfactory.com/microservices-examples#:~:text=In%202009%2C%20Netflix%20began%20the,Netflix%20spent%20the%20following%20two
https://blog.dreamfactory.com/microservices-examples#:~:text=match%20at%20L365%20Refactoring%20to,architecture%20consisted%20of%20over%20700

where it made sense) – a mini swing of the pendulum back towards slightly more consolidated services
to save on network and infrastructure overhead. In essence, Netflix’s journey underscores that
microservices at scale require significant investment in automation and reliability engineering,
and that the architecture must continually adapt. They’ve shown it’s critical to revisit earlier decisions
(they’ve replaced homegrown tools with open-source standards over time) and to balance innovation
with simplification when things get too complex.

Meta (Facebook)

System Overview

Meta’s flagship social platform, Facebook, connects over 2.9 billion monthly active users to share
content and messages. Meta also operates Instagram, WhatsApp, and other products, but here we
focus on Facebook’s core architecture. The Facebook product is a massive social networking system
featuring news feed, messaging, live media, ads delivery, etc. Key architectural goals are ultra-low
latency (pages and feeds must load in a snap to keep users engaged), strong consistency within
certain boundaries (e.g. a user’s actions like comments/likes should reflect quickly across their view),
and Internet-scale scalability to handle billions of read/write events per day. Additionally, developer
productivity has been a Meta focus – enabling thousands of engineers to work in the same codebase
and deploy changes daily.

High-Level Architecture

Facebook historically took a different path from many peers: it remained largely a monolithic
application in terms of code integration, while implementing distributed systems under the hood for
data storage and caching. The site is (as of mid-2020s) still primarily delivered by a monolithic web
front-end written in PHP (transformed into Hack, a statically typed PHP dialect) . Rather than break
the application into many microservices, Facebook scaled the monolith by optimizing the runtime and
by using tiered backend services for specific domains (e.g. search, social graph, chat). We can think of
Facebook’s architecture as a hybrid monolith: one giant codebase deploy (the “web server” that
generates pages and APIs) that calls into numerous distributed backend systems. The architectural
pattern emphasizes performance – every page load might require hitting dozens of backend data
services, so Facebook keeps most of those calls on a high-speed internal network and co-located in data
centers to minimize latency. Notable design patterns include heavy use of caching and
denormalization. For example, instead of doing expensive joins or remote fetches on page load,
Facebook precomputes and caches much of the feed data needed. Facebook introduced GraphQL in
2012 as a way for client apps to efficiently query complex data from the backend . GraphQL
allows a single request to retrieve a nested graph of data (like a post with comments and commenter
details) without multiple round trips, aligning perfectly with Facebook’s data model (social graph). For
internal service-to-service patterns, Facebook uses Thrift (an RPC framework they created) extensively –
backend services (like the social graph index, the chat server, etc.) expose Thrift interfaces consumed by
the PHP layer or other services. Many backend components follow specialized architectures: e.g. the
messaging system uses an event-driven server that maintains long-lived connections for real-time
chat, separate from the main PHP web app. In summary, Facebook’s high-level architecture has been
described as “monolithic core, distributed edge” – one core application that relies on numerous
distributed systems (edges) like caching tiers, search indexes, ML services, etc., rather than hundreds of
completely separate microservice applications.

21

22 23

8

http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/#:~:text=Facebook%20chose%20to%20scale%20its,slowed%20down%20the%20entire%20company
https://www.infoq.com/news/2015/10/graphql-your-schema/#:~:text=,our%20REST%20resources%20well%20isolated
https://www.infoq.com/news/2015/10/graphql-your-schema/#:~:text=Feed%20stories%20,networks%20led%20us%20to%20GraphQL

Technology Stack

Languages & Frameworks: The front-end web servers are written in PHP (converted to Hack), running
on a custom build of the HHVM (HipHop Virtual Machine) just-in-time compiler for PHP/Hack .
This gives the productivity of PHP with the performance of a compiled language (HipHop initially
transpiled PHP to C++ for performance , later HHVM provided JIT compilation). For front-end code
delivered to browsers, they use JavaScript (notably React, which Facebook created, for rich interactive
UI) and also leverage GraphQL for data fetching to the web/mobile apps. Backend systems: There are
many specialized components mostly in C++ (for performance-critical services) and some in Java. For
example, the timeline ranking service and feed aggregation logic uses C++ services (incorporating ML
models). The chat backend is implemented in Erlang (it was, at one point, due to Erlang’s strength in
concurrent connections), though it may have been reworked since. Databases: Facebook’s primary user
data is stored in a huge MySQL deployment, but not in a naive way. They use MySQL as a reliable
storage engine, while a massive layer of caching and a custom data access layer called TAO (The
Associations and Objects) sits on top . TAO is a distributed graph datastore that caches the social
graph in memory across many servers, serving billions of reads per second by caching relationships
(edges) and objects . It uses MySQL under the hood for persistence but most queries hit in-
memory caches spread across clusters for speed. Caching: In addition to TAO, Facebook operates one
of the largest Memcached deployments in the world. There are thousands of memcached servers (flash
and RAM based) that cache everything from user session data to the results of complex DB queries

. The PHP web servers heavily query memcache; if data is missing (cache miss), they fetch from
MySQL and then populate cache. This caching layer is critical – practically all reads are served from
memory. Search: Facebook’s search infrastructure (for people, posts, etc.) is handled by a service called
Unicorn (for FB Graph Search originally) and Galene (their newer full-text search) – these are
distributed search indexes in memory. AI/ML: A lot of Facebook’s features (feed ranking, face
recognition, content moderation) rely on ML models. Meta built an internal platform for ML (e.g.
FBLearner Flow) and runs models via services optimized with Caffe2/PyTorch. These run on
heterogeneous hardware including GPU servers in data centers. Big Data: Facebook operates
enormous Hadoop/Spark clusters for batch processing, using these to derive insights and train models
from the firehose of data. Networking & CDN: To ensure low latency globally, Facebook has a private
backbone between data centers and deploys CDN caches for static content (images, videos) via their
Edge network (often co-located in ISP facilities). They use their custom CDN (and Akamai for some
content historically) to serve photos/videos nearer to users. Deployment: Facebook is known for rapid
deployment – they use an in-house system to roll out new code (a system called Tupperware for
containers and configuration, and earlier tools like Phabricator for CI). Code is deployed company-wide
at least once a day. The site runs largely on bare-metal servers (Meta designs its own servers via the
Open Compute Project), not on a public cloud. Dev Tooling: Being a monorepo, Facebook built powerful
tools (like Buck build system, static analyzers for Hack/JS) to manage the huge codebase.
Observability: Facebook’s engineers have Scuba and other internal tracing systems to monitor
performance issues given the scale (billions of requests).

Data Architecture

Facebook’s data architecture is built to manage the “social graph” – billions of nodes (users, posts,
comments) and trillions of edges (likes, friendships). Online Data Store (TAO): As mentioned, TAO
provides a graph API for objects and associations, shielding developers from having to directly manage
cache coherence or SQL. TAO is deployed as geographically distributed clusters that handle read-mostly
workloads with eventual consistency. It gives fast answers to queries like “Friends of X” or “Posts by X”
from memory. The tradeoff is some eventual consistency – e.g. a new like might take a few seconds to
propagate to all caches. Facebook favors availability and speed over strict consistency in most read
flows . MySQL Sharding: All user data in MySQL is sharded – by user ID essentially, so each

21 24

25

26 27

26 28

29

30

28 31

9

http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/#:~:text=Facebook%20chose%20to%20scale%20its,slowed%20down%20the%20entire%20company
http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/#:~:text=The%20Hip%20Hop%20Virtual%20Machine,as%20a%20dialect%20of%20PHP
http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/#:~:text=without%20going%20through%20a%20painful,slowed%20down%20the%20entire%20company
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20runs%20on%20thousands%20of,millions%20of%20writes%20per%20second
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=Facebook%20used%20memcache%20as%20a,graph%20before%20TAO%20was%20implemented
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20runs%20on%20thousands%20of,millions%20of%20writes%20per%20second
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20still%20uses%20MySQL%20for,aware%20cache
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=The%20use%20of%20memcache%20vastly,value%20pairs%20derived%20%28some%20indirectly
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=consistency,In
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20still%20uses%20MySQL%20for,aware%20cache
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=Facebook%20has%20deployed%20a%20single,data%20set%20of%20many%20petabytes

MySQL instance holds a subset of users (and their related data). This is horizontal scaling of the
database tier. Facebook implemented automation for MySQL failover, replication lag handling, etc., to
keep this large farm manageable. HDFS & Hive: For analytical data, Facebook has one of the largest
HDFS clusters (multiple hundreds of petabytes). They created Hive (SQL-on-Hadoop) to allow engineers
and analysts to query this data. Logging pipeline: User activities (page views, clicks, likes, etc.) are
logged via a system called Scribe (developed by FB, now largely migrated to Kafka I believe) .
These logs feed into Hadoop in near real-time. Data Warehousing: On top of Hive, Facebook built
Presto for faster interactive queries. They also use custom tools for specific analyses (e.g. Dataswarm).
This powers internal analytics dashboards and ML feature generation. Machine Learning Dataflow:
Facebook’s ML models (e.g. the news feed ranking algorithm) are trained on huge data sets of user
interactions, content features, etc. They use offline training (with frameworks on GPU clusters) and then
push models to production for inference. There is also an in-memory feature store that feed ranking
features to the live system. Caching layers for ML: e.g. they cache the top N stories for each user
computed by feed ranking, so when the user opens the app, it loads quickly from this cache instead of
recomputing on the fly. Geo-Replication: Facebook’s data architecture spans data centers in different
regions (U.S., Europe, Asia). They employ geographically distributed replication for disaster recovery and
to serve users from nearest region. However, Facebook traditionally did not partition by region for
simplicity – instead, they run a few giant global clusters with cross-datacenter replication. For example,
if you’re in Europe, your read might go to the European data center, which gets its data via replication
from U.S. masters. This yields lower read latency while writes might hop over to the master and back.
They introduced the concept of regions (at one point they had “global” vs “local” clusters) but as of
recently, they aim to keep user data in the region of usage due to data locality laws (especially after
GDPR). So the data architecture is evolving to a more regional model (with compliance ensuring some
data stays in-region). Analytics and Reporting: Facebook has numerous systems like ODS
(Operational Data Store) and aggregators that compute metrics for growth, ads impressions, etc., in
real time. Those are built on streaming frameworks (they used HBase and others for real-time
counters). Backup and Disaster Recovery: Facebook replicates data in at least 3 locations. They also
keep backups (for some critical data, possibly to tape or remote storage). Given the scale, they can’t
practically “backup everything” daily, but they use replication + snapshots for key DB clusters. Notably,
images and videos (user-uploaded content) are stored in multiple replicas across datacenters using
their Haystack object storage system to ensure no data loss.

Scalability and Resilience

Scalability Approaches: Facebook’s front-end tier (web servers) scales by simply adding more identical
servers behind load balancers. When a user visits Facebook, a global load balancer directs them to a
data center, then local load balancers assign a web server. These web servers keep no user state (they
pull everything from caches/DB), so they can scale horizontally near-infinitely. Facebook has thousands
of web servers handling PHP/Hack code execution for pages. The challenge was scaling the data access
– which they solved via massive caching. By ensuring most reads are served from memcached and
TAO, they reduced load on MySQL enough to scale. They scale the cache tier itself by hashing keys
across many cache nodes (consistent hashing). If more capacity is needed, they add cache servers and
rebalance. For writes, the MySQL shards can become bottlenecks, so Facebook employs vertical
partitioning (different tables on different shards) and eventually shard splitting if one shard grows
too large. They also implemented multi-writer setups where feasible and developed the Apollo high
availability system for MySQL (to handle master failover quickly). Resilience: Facebook is engineered to
be fault-tolerant at the site level. If a web server or cache node crashes, the user request will just hit
another server on retry; systems detect failures and route around them. On the data side, read
availability is prioritized – even if a user’s primary MySQL shard is unreachable, Facebook can often
serve slightly stale data from cache or replicas (ensuring the site is still usable, perhaps with a delay in
showing the latest like counts). Multi-Data Center Strategy: Facebook’s architecture uses multiple

32 33

10

https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=Insights%20from%20Paper,geographically%20distributed%20instance%20of%20TAO
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20still%20uses%20MySQL%20for,geographically%20distributed%20instance%20of%20TAO

active data centers. Each data center can serve any user (though they prefer to serve a user from the
closest to minimize latency). They keep data synced so that if an entire data center goes down (which
has happened due to power issues, for example), the traffic fails over to others. They achieved this by
doing multi-master or master-replica setups across DCs and being able to promote a replica in another
DC to master if needed. Disaster Recovery: Facebook performs drills (though perhaps not publicized
like Chaos Monkey) to simulate DC-level failures. A known incident in 2019 involving a routine
maintenance issue caused a cascading failure, teaching them to create even more isolation between
components. Now, they have “cell-based” architecture in some parts – splitting the infrastructure into
cells that can operate independently so a failure in one doesn’t take down the whole system. Graceful
Degradation: If certain features fail (say the birthday reminders system), Facebook will catch the errors
and simply not show that module, rather than failing the entire page. This modular rendering of the site
helps resilience. Latency Management: To meet latency goals at scale, Facebook’s front-end does a lot
of work in parallel – the PHP execution engine will issue many asynchronous data fetches to backend
systems concurrently. They use an async framework (XHP in PHP) to retrieve different parts of the page
in parallel and then compose the final page. This reduces the tail latency of page generation. It’s a
scaling technique for speed: doing more in parallel within one request. Capacity Planning: Facebook
must handle unpredictable spikes (e.g. viral posts, world events). They maintain significant spare
capacity and auto load-balancing. If one cluster gets hot, the load balancer can shift new user sessions
to a less busy cluster. They’ve also built backpressure: if caches are missing data and DB gets
overloaded, the system will throttle some requests (so the site might show older data rather than
hammer the DB). Global Traffic Management: To reduce user-perceived latency, they serve some
content from edge PoPs via the Facebook Edge Network (FNA). This includes serving static content
(videos, photos) and even some dynamic content caching at edges. By placing servers near ISP hubs,
they shorten the path. This is crucial when scaling to billions of users globally – it’s not just server
capacity, but network latency. Resilience to Bugs: Another facet is how they handle software pushes.
Because thousands of engineers commit code, Facebook built systems to detect anomalies (in metrics,
error rates) quickly after a push and can roll back changes rapidly to limit impact. This operational
resilience is part of how they keep the site scalable and reliable even as they move fast in development.

Security Architecture

Account Security: Facebook manages billions of user accounts, so identity security is robust. They use
hardened password storage (bcrypt with per-user salts) and offer MFA options to users. The
authentication system monitors for suspicious logins (new device or location triggers a verification
challenge). OAuth: Facebook’s platform (Facebook Login) allows third-party apps to use OAuth tokens
to access user data with permission. This is isolated via scopes and reviewed through automated and
manual processes to prevent abuse. Internally, OAuth tokens and sessions are stored securely and are
invalidated on logout or suspicion of compromise. Session Management: Each active session (web
cookie, mobile token) is tied to device identifiers; anomalies can trigger re-auth. They also employ rate
limiting on critical endpoints (login attempts, etc.) to thwart brute force. Network Security: Data
exchanges are all over TLS externally. Internally, within data centers, historically Facebook did not
encrypt all internal traffic (relying on physical security of their private network). However, with zero-trust
trends, they have been increasing encryption internally too and certainly encrypt all cross-datacenter
traffic. They have strong perimeter defenses – custom firewalls and ingress systems that scrub
malicious traffic. Platform Security: The internal architecture strongly isolates user data by access
permissions. Every read of user data goes through checks (for example, you can only see a post if you’re
authorized, enforced by feed queries filtering via privacy settings). These checks are baked into TAO
queries and the API level. They also built tools to detect if internal queries or employee access might
breach policy (with heavy auditing). Encryption & Privacy: Private messages in Messenger are now
end-to-end encrypted (an evolving effort via the Signal protocol). WhatsApp has end-to-end encryption
by default (different service but under Meta). On Facebook, most data at rest is encrypted (they encrypt

11

disks and certain sensitive fields). They comply with GDPR: users can download their data and request
deletion, which Meta’s data architecture supports by scrubbing data from various stores (a significant
engineering effort given data spread). Secure Development: Meta emphasizes code review and has
automated static analysis to catch common security bugs (XSS, SQL injection) – their Hack language has
features to prevent these by design (like typed queries). They also maintain a bug bounty program to
find vulnerabilities. Resilience to Abuse: The scale of Facebook made it a target for spam and malicious
content. They have automated systems (ML classifiers) running in real-time to detect fake accounts,
spam posts, etc., which is a layer of security for platform integrity. Infrastructure Security: Meta runs
its own data centers with custom hardware and OS optimizations. They minimize third-party software,
reducing supply-chain risks. Physical security is tight: data centers have biometric access, etc., and
drives are destroyed if faulty. Service Security: Internal services authenticate via service tokens and use
an internal PKI for service-to-service encryption as needed. For example, the GraphQL endpoints verify
the user’s session token, then the backend services (like timeline service) double-check permissions on
any data fetched. Compliance: Besides privacy laws, Meta must comply with regulatory orders around
security (for instance, after some past breaches, they have external audits). They have dedicated
security teams for each domain that constantly red-team and improve defenses. Disaster Recovery &
Security: In terms of backup security, encrypted backups are maintained, and the keys are managed by
a separate system (KMS) with strict access.

In summary, Facebook’s security architecture, much like its system architecture, emphasizes centralized
control (monolithic code means security fixes propagate everywhere) but distributed enforcement
(billions of checks per second in caches and data fetches to enforce privacy settings). Their approach
has evolved to more encryption and zero-trust principles as they matured.

Evolution and Tradeoffs

Facebook’s architectural evolution is unique in that it largely resisted the microservices trend for a long
time. Early on (mid-2000s), they decided to double-down on a unified codebase and optimize the heck
out of PHP, rather than rewrite components as separate services. This yielded huge developer
productivity – engineers could touch any part of the system easily and deployment was unified. The
tradeoff was that the monolith became very large (in 2020, the core had >2.8 million lines of Ruby-on-
Rails code for Shopify; Facebook’s PHP likely in the tens of millions of lines) , requiring engineering
solutions to manage complexity (Facebook created Hack with static typing to better manage the code at
scale, and built numerous modularity tools). As Facebook grew to thousands of engineers, they had to
invest in DevTools and modularization even within the monolith (somewhat analogous to how Shopify
introduced components in their Rails monolith). They gradually evolved parts of the architecture
into separate services only when necessary. For example, search was spun out as a separate backend
service (for performance and because it could be decoupled from main feed logic). Chat was an
independent service early (due to its need for persistent connections). This pragmatic approach meant
fewer moving parts to orchestrate than a full microservice suite, but put tremendous strain on the
underlying infra (hence TAO and caching had to be extremely sophisticated). Over time, Facebook has
introduced more service boundaries – e.g. the ML platform is separate, Instagram runs somewhat
separate stack (though sharing infrastructure), etc. One big evolutionary step was GraphQL in 2012 .
Moving to GraphQL for the client-to-server API simplified client development immensely (a single query
to get all needed data) and let them decouple client feature rollout from backend structure. Internally,
that meant the server had to evolve to support GraphQL efficiently – essentially adding a layer that
could aggregate data from multiple backend sources (graph API, search, etc.). This was a shift from
pure server-rendered HTML to a richer client app model, which was necessary as mobile became
dominant. Scaling the social graph led to TAO in 2009 . This was a response to pain points with the
old memcache + MySQL approach (developers made mistakes handling cache coherency). TAO
abstracted that and significantly improved reliability and developer ease at the cost of building a whole

34

35

22

36

37 38

12

https://shopify.engineering/shopify-monolith#:~:text=Shopify%E2%80%99s%20core%20monolith%20has%20over,bounded%20way
https://shopify.engineering/shopify-monolith#:~:text=That%E2%80%99s%20why%2C%20over%20three%20years,The%20vision%20went%20like%20this
https://www.infoq.com/news/2015/10/graphql-your-schema/#:~:text=,our%20REST%20resources%20well%20isolated
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=All%20those%20problems%20could%20be,its%20design%2C%20let%E2%80%99s%20quickly%20go
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=product%20engineers%20had%20to%20write,most%20of%20the%20common%20chores
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=efficiently%20as%20a%20data%20store,Facebook%E2%80%99s%20%E2%80%9Cmove%20fast%E2%80%9D%20development%20philosophy

new system. It showed Facebook’s willingness to build custom infrastructure when existing ones didn’t
fit. Over the years, they also replaced or improved TAO (introducing multi-region support, better
consistency options). A notable incident in Facebook’s evolution was the 2018 site outage caused by a
bug in a routine maintenance script, which cascaded through their network – it taught them about
circuit-breaker-like isolation for maintenance. They implemented more guardrails to prevent global
impact of non-critical systems. Tradeoff – Monorepo and Monolith: Facebook’s choice meant
extremely fast development (engineers didn’t have to deal with service boundaries for most feature
work), but debugging performance issues could be harder (it’s one giant system – needed excellent
observability). They addressed that with advanced tracing tools. Hardware and efficiency tradeoffs: In
early 2010s, Facebook traded off some code efficiency for dev speed but later had to circle back and
optimize heavily (e.g., writing performance-sensitive parts in C++, tuning PHP runtime). They even
considered breaking out some services (there were rumors of them considering microservices around
2017 to manage reliability), but they found ways to achieve reliability within the monolithic paradigm. A
recent shift is breaking Messenger and some features out of the main app – partly for mobile app
performance and partly to scale those systems independently. For example, Messenger has its own
backend now (in part to do end-to-end encryption). Meta’s acquisitions integration: They decided to
let WhatsApp and Instagram run more independently (different stacks) rather than unify on one
monolith – a pragmatic decision to not disturb products with billions of users. This contrasts with the
one-codebase philosophy for Facebook core. In conclusion, Facebook’s evolution demonstrates that a
monolithic architecture can scale to an unprecedented level, but it required massive engineering
investment in custom infrastructure (HHVM, TAO, etc.). The tradeoffs they made (centralization vs.
modularization) were continually revisited: for example, the move to GraphQL reintroduced a form of
modular thinking (schema-defined boundaries). Facebook showed that there’s no one-size-fits-all – they
resisted microservices when others embraced them, and it paid off in speed, but also faced challenges
in isolation and fault containment. Going forward, they have been incrementally moving to more service
isolation where it makes sense (especially under Meta, more emphasis on cross-app services like a
unified ads platform serving FB/IG). The key lesson is their oft-quoted motto: “Move fast but build stable
infrastructure to catch you when you break things.” They always invested in that safety net to allow the
architecture to evolve with relatively few catastrophic failures despite the rapid changes.

Google

System Overview

Google’s technology infrastructure underpins products in cloud services, search, advertising, email
(Gmail), enterprise apps, mobile (Android), and more. At its core, Google Search is an iconic service
handling billions of queries a day globally. Google’s overarching architectural goals are planetary-scale
scalability, ultra-high performance, and fault tolerance such that no single data center failure or
software bug significantly disrupts service. Many of Google’s products share common infrastructure
(e.g. Google’s authentication, network, storage systems), so Google’s architecture is as much about a
platform to run services as it is about the services themselves. In short, Google has built a cloud
operating system for its data centers to achieve strong isolation and efficiency while serving diverse
products. Key aims include low latency (search results come in milliseconds), throughput (e.g.
YouTube streams millions of hours of video), and efficiency (packing workloads to minimize cost).

High-Level Architecture

Google’s architecture can be characterized as a collection of large-scale distributed systems tied
together by a common scheduling and networking fabric. Unlike a traditional SOA with clearly
delineated microservices, Google historically structured systems by function (e.g. the web index, the ads

13

index, the knowledge graph, etc.) but all running on a shared platform. Over the years, they embraced
microservices internally, but at Google’s scale it manifests more as “distributed computing
frameworks” than individual service processes that humans think about. For example, Google’s search
involves many stages: web crawling (Batch process on MapReduce originally), indexing (Bigtable +
retrieval services), and query serving (a pipeline of services that parse query, fetch results, rank them,
etc.). Each of these might be a fleet of microservices distributed across data centers, coordinated via
Google’s internal RPC mechanisms. Google’s design patterns include heavy use of async processing
(MapReduce for batch, now Cloud Dataflow/Flume for stream processing) and paxos-based
coordination for consistency in certain systems (e.g. Spanner database). They favor idempotent,
stateless services that can be restarted/moved by the scheduler easily. APIs and RPCs: Before gRPC
existed, Google used an internal RPC called Stubby (built on Protocol Buffers) for nearly all service-to-
service communication. This standardized how microservices talk inside Google – strongly typed proto
interfaces, synchronous RPC calls over the network. Now gRPC (open-source Stubby successor) is widely
used. For external APIs, Google uses REST and gRPC (Cloud APIs are often exposed via gRPC and JSON/
HTTP). Monorepo and Code Organization: It’s noteworthy that Google kept a single source repository
for almost everything, enabling code reuse and consistent APIs between teams. This facilitated creating
many small services because common libraries (for logging, RPC, etc.) were always available and kept in
sync. Design Patterns: Google pioneered MapReduce (batch parallel processing) which influenced how
they handle large computations (like indexing). They also spearheaded service orchestration with
Borg (cluster manager) which is the precursor to Kubernetes. Borg allows Google to treat an entire data
center as one big computer where services (jobs) are scheduled into containers on machines. This
means Google’s services don’t worry about specific hosts – Borg finds resources and starts tasks, and
will restart them elsewhere on failure. This pattern means microservices at Google are very loosely
coupled to hardware. Eventual Consistency vs Strong: Google has systems on both ends. Bigtable, for
instance, is eventually consistent (single data center focus originally). But Spanner, introduced later,
provides global strong consistency for transactions (e.g. AdWords uses Spanner to ensure ads
budgets and billing remain consistent worldwide). So Google tends to choose consistency models per
application requirements (e.g. Gmail prioritized availability and partition tolerance, so it relied on
asynchronous replication and some eventual consistency; Ads prioritized consistency for financial data,
so Spanner’s approach was used). Scalability by Partitioning: Pretty much every Google system is
partitioned (sharded) – indexes are sharded by terms, data stores by keys, etc., enabling horizontal
scale-out. For example, the search index is split into many “index shards”; a query fan-outs to all
relevant shards in parallel and merges results. This parallel retrieval is key to quick responses. Caching
and Edge: Google operates one of the largest content delivery networks and caching systems. They
have “Google Global Cache” servers at ISPs for YouTube and other static content. They also heavily
cache query results in RAM (e.g. popular queries can be served from an in-memory cache at the query-
serving layer to cut latency). For ads, they cache relevant ads data in memory to serve ads in
microseconds during a search query.

Technology Stack

Languages: Google is known for C++ and Java as primary for backend development, with Python as a
popular language for ancillary tools. They also created Go (Golang) in 2009, which now is used in some
systems (e.g. for parts of Cloud services, or networking). For machine learning, Python (with
TensorFlow) is heavily used. Communication & Data Formats: Protocol Buffers (binary serialization)
are ubiquitous – used for almost all RPC payloads and stored data structures. Core Infrastructure
Components: Google’s foundational tech includes Borg (cluster manager) -> evolved to Kubernetes
externally, Colossus (distributed filesystem successor to GFS), Bigtable (distributed NoSQL database),
Spanner (distributed SQL database with external-consistency transactions) , and Pub/Sub
systems (they had internal ones, now Google Cloud Pub/Sub is public). The tech stack for storage sees
Bigtable usage in systems like web indexing, personalization (Bigtable is schema-less and scales for

39 40

41 42

14

https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=synchronously,1%20Introduction
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=Spanner%20is%20a%20scalable%2C%20globally,servers%20changes%2C%20and%20it%20automatically
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=synchronously,changes%2C%20across%20all%20of%20Spanner
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=shards%20data%20across%20many%20sets,even%20across%20datacenters

petabyte data with high throughput). Spanner is used where consistency across datacenters matters –
e.g., Google’s ad bidding system “F1” moved to Spanner for multi-region consistency . Compute
& Containers: Borg schedules tasks into Linux cgroups (effectively containers). Google later built
Container Optimized OS for their servers. All microservices run as containers managed by Borg/
Omega – this is the foundation of their stack, giving them auto-scheduling, bin-packing for efficiency,
and automatic failover. Networking: Google’s network stack is an advantage – they built their own
global SDN (software-defined network) and uses QUIC (they developed QUIC, now an internet standard)
for optimizing transport. They have load balancers at multiple layers: a global load balancing system
that directs user traffic to nearest Google Front End (GFE) via anycast, and local load balancers that
distribute to services. GFEs (which are essentially proxy servers at each data center edge) terminate
external connections and then communicate with backend services using RPC. Frontend stack: For
user-facing services like Search and Gmail, frontends are often in C++ or Java running in Google’s web
server frameworks. They generate HTML/JS, where Google often uses their own frameworks (they had
GWT in the past; now more likely heavy use of Angular for internal tools, or just raw TypeScript for apps
like Gmail). Databases and Caches: Bigtable (written in C++) offers low-latency storage for sequential
data – used in products like Google Analytics, Earth, etc. Megastore was a middle-ground data store
built on Bigtable + Paxos to provide some transactional guarantees (used in some early social products).
Now Spanner provides a more powerful replacement and backs things like Gmail’s metadata storage.
For caching, Google uses in-memory caches extensively (they have proprietary systems akin to
memcached, and also use persistent memory in some DBs). DevOps & SRE: Google practically wrote
the book on SRE (Site Reliability Engineering). They have extensive monitoring (the Borgmon system,
now evolved to Monarch) with alerting for any anomalies. Their deployment pipeline is automated via
Blaze/Bazel build and test, and pushes using internal tools (also their SREs gate releases for critical
systems). They champion canarying – new versions of a service run in a small percentage of Borg cells
and are monitored before scaling up. Compute Efficiency: Google’s stack also involves custom
hardware – e.g., TPUs (Tensor Processing Units) for ML, which they schedule in Borg for workloads like
training models for Google Photos, etc. They also design their own storage hardware (disks, flash
arrays) to optimize Colossus. At the software level, their stack is optimized to squeeze maximum
performance: e.g. they utilize shared memory techniques for inter-service communication when
possible (within a machine), and push a lot of logic down to lower layers (like BPF in the kernel for
packet processing).

Data Architecture

Google’s data architecture is broad, supporting web-scale indexing, knowledge graphs, and real-time
user data for many services. Web Indexing Pipeline: Google continuously crawls the web (Googlebot),
which feeds raw pages into a processing pipeline (previously MapReduce-based indexing). They parse
pages, extract links, and update the index which is stored in a distributed manner (the famous Google
Index servers). The index is partitioned (e.g. by term – an “inverted index”). Querying involves splitting
the user query into terms, each term lookup is done across shards, then results (document lists) are
merged and ranked. This happens in hundreds of milliseconds. Advertising Data: Google’s ads system
uses big data processing – logs of user searches and clicks flow into systems that update machine-
learned models (for ad targeting and ranking). These likely use streaming processing (e.g. a FlumeJava
or Dataflow job) to update models continuously. The ads auction platform (AdWords/AdX) was rebuilt on
Spanner as mentioned, meaning they maintain a globally consistent ledger of advertising transactions
(which is critical for billing correctness) . Storage Systems: Google has multiple storage
abstractions: Bigtable (which underlies things like Google Cloud Datastore and was originally for e.g.
crawling and Gmail backend indexing), Colossus/GFS for file storage (Colossus is GFS’s successor that
strips away single-master bottlenecks and scales across data centers). For example, Gmail attachments
and large blobs might reside in Colossus, while message metadata lives in a spanner or per-user
Bigtable. Global Database (Spanner): With Spanner, Google achieved a globally-distributed SQL

43 44

43

15

https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=even%20in%20the%20face%20of,1%20or%202%20datacenter%20failures
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=initial%20customer%20was%20F1%20,1%20or%202%20datacenter%20failures
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=even%20in%20the%20face%20of,1%20or%202%20datacenter%20failures

database with external consistency using atomic clocks (TrueTime API) . Data architecture
wise, this allows any service that needs it (e.g. YouTube comments, or Cloud SQL offering) to rely on
multi-region transactions with strong guarantees. Consistency Models: Many Google services are read-
heavy and tolerate eventual consistency – Bigtable gave them that (writes eventually propagate).
However, for user-facing actions, they often ensure monotonic reads for a user by routing them to same
replica, etc. Analytics and ML: Google has an enormous internal data warehouse. Originally they had
Sawzall (interpreted language for logs analysis on GFS data) , replaced by Dremel (the basis of
BigQuery) which can do interactive SQL on huge datasets (they reported scanning 20 PB/day even back
in 2008 via MapReduce). Now BigQuery (Dremel) and F1 Query (Spanner analytics) let internal
teams run complex analytics. They do heavy AB testing analysis (e.g. changes in Search are tested with
live experiments, results analyzed on logs via these tools). Knowledge Graph: Google has a knowledge
graph store that connects entities (people, places, things) with relationships. This is likely a custom
graph database (possibly on top of Spanner or Bigtable). It powers features like enriched search results
(info panels). Data for it comes from structured crawling (Wikidata, etc.) and is stored in a queryable
form for quick retrieval in search. Streaming Systems: For real-time products (e.g. Google Maps traffic,
or Google Meet video calls), specialized data flows exist. Meet uses a distributed SFU architecture with
media servers in colocation facilities worldwide to minimize latency. Those aren’t “data” in classical
sense, but ephemeral streams that the network handles. Another example: Google’s real-time
notifications system – if you get a Gmail or Calendar alert, Google has a low-latency pub-sub system
that pushes notifications from the server to devices (likely using something like Cloud Pub/Sub
infrastructure). They also have the central Google Notification System for cross-product events. Data
Lifecycle and Privacy: Google retains massive logs but has to enforce retention policies (e.g. they
anonymize IP addresses after a certain period for search logs). Their data architecture thus includes
pipelines to obfuscate or drop data for privacy compliance. They also build tools for data discovery and
classification to ensure personal data can be tracked and managed as required by regulations.
Backups: They keep redundant copies of data – typically, Spanner keeps 3–5 replicas across zones,
Bigtable similar, Colossus replicates file chunks several times (and uses Reed-Solomon encoding for
efficiency). Google likely has cold backups for critical systems (some on tape in different geographic
region, etc.).

Scalability and Resilience

Horizontal scale at all layers: Google’s mantra is scale-out, not up. When more capacity is needed,
they add servers (or these days, more containers on existing servers) rather than relying on one super-
powerful machine (though they also build powerful custom hardware). Their systems automatically
scale: for example, Borg can be set to dynamically allocate more tasks of a service if load increases
(though historically Google often did static provisioning with headroom and relied on capacity planning
due to sensitive latency requirements). Data center scale: Google’s infrastructure is designed so that
any single data center or cluster can be taken out of rotation without bringing a service down. They
achieve this with geo-redundancy – e.g. for Search, index shards are replicated in multiple data centers,
so queries can be routed to an alternate if one fails. Google operates in multiple continents with
backbone links so that even inter-continental failover is possible. Load balancing and Traffic
management: They use Anycast DNS such that a user’s request goes to the nearest Google Front End.
GFEs can also shed load to others if one location is too busy. Within a data center, they have layer 4 and
layer 7 LB (often using their Maglev software LB). These distribute traffic among service instances and
can detect hung instances to avoid them. Failure handling: At Google’s scale, hardware failures (disk
crashes, node down) are routine. Systems like GFS/Colossus and Bigtable are built to tolerate failures
transparently (e.g. if a tablet server in Bigtable dies, the master reassigns its tablets to others and
clients retry on new location). Borg will restart crashed processes usually within seconds. Google’s SRE
culture means they set error budgets – services are allowed some failure rate, and if exceeded,
development stops for reliability improvements. Resilience Testing: Google does something similar to

41 45

46

47

16

https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=synchronously,changes%2C%20across%20all%20of%20Spanner
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=Spanner%20is%20a%20scalable%2C%20globally,even%20across%20datacenters
https://highscalability.com/google-architecture/#:~:text=Update%3A%20Greg%20Linden%20points%20to,8%20GB%20of%20memory
https://highscalability.com/google-architecture/#:~:text=100,8%20GB%20of%20memory

chaos testing. They have systematically tested things like network partitions and failovers. In Spanner’s
development, for instance, they likely simulated clock skew and link failures extensively to ensure the
system remains consistent. Throttling & Overload: Google services often degrade by returning partial
results or less expensive computations under overload. For example, if a Search query times out waiting
for a complex sub-result (like a knowledge panel), it will just return the core web results rather than fail
completely. Also, their RPC frameworks allow setting deadlines – if a backend doesn’t respond in X ms,
the caller can cancel and proceed with whatever data it has. This prevents one slow component from
hanging the user’s result. Global catastrophe resilience: Google prepares for large-scale events too
(e.g. major fiber cut between regions). They have built considerable redundancy in their network
(multiple submarine cables, etc.). Data is replicated not just in one region but across at least two for vital
systems (Spanner by default replicates across regions). In extreme cases like an entire region outage,
Google can route all users to other regions; latency might increase but services remain up. Auto-
scaling and capacity: Some Google systems auto-scale user-facing components – e.g. if YouTube traffic
surges, more streaming servers will be allocated by Borg. But many core systems are provisioned to
peak plus margin because they can’t quickly copy multi-petabyte data to new nodes. Instead, they rely
on consistent performance and having enough headroom. Google’s capacity planning is sophisticated:
they analyze trends and upgrade or add data centers accordingly. Multi-tenancy and isolation: A form
of resilience is isolating noisy neighbors. Google’s Borg schedules batch jobs (like indexing, ML training)
in the same machines as latency-sensitive online services, but with strict priority and resource quotas. If
resources are needed for user traffic, Borg preempts lower priority jobs. This ensures interactive
services remain fast even during big batch computations – an approach known as mixed workload
isolation that improves utilization (one reason Google’s efficiency is high). Software rollout safety:
Another angle – Google often uses phased rollouts and feature flags to control changes. If a new
release of a service has a bug causing errors, they can quickly flip it off or roll back through their
deployment tools, often before most users even notice. This limits the blast radius of software faults
(which can be as damaging as hardware faults to availability). Tail latency: At Google scale, one in a
thousand requests taking longer can degrade user experience given so many requests. Google works
heavily on reducing tail latency. Techniques include hedged requests (sending duplicate requests to
two servers and using the first response), careful queue management, and feeding slow server
detection back into load balancers. By trimming the tail latency, they improve overall perceived
performance and avoid timeouts that could cascade. Disaster recovery drills: Google SREs perform
occasional exercises (e.g. taking a service region offline artificially) to test procedures. They also
simulate data corruption scenarios to ensure backups and recovery processes are solid. All these
contribute to a very resilient posture where even huge traffic spikes (like breaking news events) or
failures can be handled with minimal user impact.

Security Architecture

Infrastructure Security: Google has custom-designed the entire stack for security (Google’s
Infrastructure Security Design is well-documented externally). Starting from hardware, they have Titan
security chips on servers to verify firmware and boot (prevent low-level attacks). They use machine
identity certificates so Borg tasks can prove identity to each other. Internal Communication: They
assume internal networks might be compromised, so they built Application Layer Transport Security
(ALTS), an internal mutual authentication and encryption protocol for RPCs between services. ALTS
ensures that, for example, a microservice calling a database service presents a service credential and
establishes a secure channel. This is part of their BeyondCorp zero-trust approach. So, many internal
communications are encrypted (especially across data centers). User Data Security: Google handles
sensitive data (emails, documents). They encrypt data at rest by default: all data in GFS/Colossus,
Spanner, etc., is transparently encrypted using Google-managed keys. Access control is strictly enforced
by service frontends. For instance, a Gmail server will verify you have a valid session token and only
then allow retrieval of your emails (which are stored partitioned by user). They have systems to detect

17

anomalies like an internal service trying to access data it shouldn’t – part of Access Transparency logs.
Internet-facing Security: Google frontends provide defenses like DDoS protection (absorbing attacks
on their vast network). They use Google Cloud Armor-like tech for filtering malicious traffic. They also
terminate TLS at the edge with custom hardware accelerators to handle scale. Product Security: Each
Google product has specific hardening. Gmail, for example, scans attachments for malware in a
sandbox. Google search isolates the crawler from internal network (to avoid fetched content causing
harm). Identity and Auth: For end-users, Google has a unified accounts system. They heavily protect
accounts with risk-based challenges, two-factor auth (and pushing for security keys for high-risk users).
Internally, they built the Google Sign-In OAuth platform which issues tokens with scoped access – used
across their ecosystem. Inter-service AuthZ: Google’s security architecture introduced Application
Level Access Control – e.g., when a service A requests data from service B on behalf of user U, it often
passes an OAuth token or similar representing U’s consent. For instance, Google Docs service calling the
Drive storage must present the user’s token to retrieve file bytes. This enforces that even between
services, data access is checked. They likely standardized this on their Auth infrastructure (with Google’s
central Identity Service issuing and verifying tokens). Employee Access: Google famously has tight
controls on employee access to production data. Access requires justification and is logged, and many
sensitive actions require escalation to an approver. They deploy encryption at the client for some
particularly sensitive content (e.g. Google’s Password Manager might store data that is end-to-end
encrypted with the user’s passphrase so not even Google can read it). Software Supply Chain: Google’s
security includes code provenance – binaries built in their build system are logged, and production only
runs binaries built from checked-in code (making it hard for a rogue to insert malicious code). They use
a system called Binary Authorization for Borg that ensures only trusted code is deployed. Monitoring
and Incident Response: Google has dedicated security teams and automated systems scanning logs
for signs of compromise. For example, a spike in errors on an auth service or unusual patterns in
internal network could alert them. They also scan for data exfiltration. Client-side Security: Chrome (a
Google product) is architected with sandboxing and they push updates frequently to protect end-users.
Similarly, on Android, Google’s Play Services provide security updates and Google Play Protect scans
apps for malware – part of Google’s holistic security approach beyond the server side. Privacy
Considerations: Google isolates data between users strictly (multi-tenancy, but each user’s data is
marked with an owner). Their advertising systems are not allowed to directly identify a user from
private data – they use anonymized or aggregate signals. They built internal systems to manage data
retention and handle regulatory requests (like GDPR’s data export and deletion). Encryption Keys:
Google manages encryption keys via a central KMS. Keys themselves are stored in secure hardware
(HSMs). Access to keys is controlled by policy – e.g. a storage system can decrypt data blocks only when
serving to authenticated requests. In cloud, they even allow customer-managed keys (to give external
users control). Penetration Testing: Google continuously pentests its services (they have a Project Zero
team for zero-day vulnerabilities too). They also invite external audits (for example, to maintain their
ISO and SOC certifications for Google Cloud, which runs on much of the same infrastructure). In
summary, Google’s security arch rests on (1) secure by default infrastructure (boot to app), (2) strict
identity and auth for every call (zero trust), (3) encryption everywhere, and (4) robust monitoring and
response.

Evolution and Tradeoffs

Google’s architecture has evolved perhaps more than any other, given its 20+ year history pushing the
boundaries of computing. Early Days (1999-2005): Google started with a monolithic C++ search engine
running on a cluster of commodity PCs. They quickly hit limitations (a famous early outage was caused
by a bug in the web indexing that took out the system). This led to an engineering culture of custom
solutions: they created GFS (Google File System) to handle storing the web crawl reliably across disks

, and Bigtable (2004-2005) to handle structured data at scale . These solved immediate needs
(GFS for large files, Bigtable for quick key-value lookup) but were general enough to fuel other products

46 48

18

https://highscalability.com/google-architecture/#:~:text=Update%3A%20Greg%20Linden%20points%20to,8%20GB%20of%20memory
https://highscalability.com/google-architecture/#:~:text=2,URLs%2C%20hundreds%20of%20terabytes%20of

(MapReduce built on GFS was used beyond search, e.g. for Google News clustering etc.). Monolithic to
Microservices: Actually, Google never had a monolith in the way enterprise apps did – they had fairly
modular components from early on (crawling, indexing, serving separated). But the concept of
thousands of small microservices wasn’t a thing until maybe the late 2000s when Google’s offerings
diversified (Gmail, Maps, etc.). They handled this by building a common platform (Borg) so that each
team could spin up services without worrying about ops – an internal precursor to the microservices/
DevOps revolution externally. The tradeoff was heavy investment in infrastructure (they spent years
perfecting Borg, whereas many companies only got something like that with Kubernetes years later).
Scaling Issues: Some well-known inflection points: In 2003, Google’s ad business outgrew their
homegrown MySQL-based ads system, leading to F1 (on Spanner) later . Also, search query volume
and index size exploded, forcing them to move to incremental updates (the “Caffeine” indexing system
around 2010 moved from batch MapReduce indexing to continuous indexing pipeline). Each change
had tradeoffs – for instance, Caffeine was more complex to build than MapReduce-based batch, but
gave fresher search results. Data consistency vs availability: Original Google systems favored AP (as
per CAP): Bigtable doesn’t do multi-row transactions (except through clients performing optimistic
concurrency). As Google moved into more user-interactive apps (like Google Docs with real-time
collaboration), they needed stronger consistency guarantees. This drove Spanner’s development – a
tradeoff of some latency (wait for consensus) for consistency. Spanner uses atomic clocks to minimize
that latency , an example of Google throwing deep tech at a problem. Hardware Evolution:
Early Google ran on off-the-shelf PCs (with custom Linux). Over time they realized custom hardware
could give edges: they introduced custom networking gear (their own switches), then TPUs for ML
(rather than using only GPUs). Each hardware introduction required architectural changes to software
to exploit it. E.g., TPUs led to TensorFlow evolving to offload certain ops to TPUs seamlessly. Internal vs
External: A major evolution was turning internal systems into Google Cloud products. This required
adding multi-tenancy and self-service aspects. They containerized infrastructure more fully and
separated resources between internal and external. Kubernetes originated from Borg – a rare case
where they externalized a core idea. This didn’t significantly change internal architecture (they still use
Borg), but it added layers to interface with cloud customers. Privacy and Trust: After some public
concerns (e.g. WiFi data collection issues, or simply the growing power of Google’s data), they doubled
down on privacy infrastructure in 2010s – implementing “encryption everywhere” and refining access
control such that even if an engineer had a bug that tried to fetch data they aren’t supposed to, the
system by default wouldn’t allow it. The tradeoff is overhead: encryption takes CPU, access checks can
add latency. Google decided these were acceptable costs for user trust and now even tout such
measures as a competitive advantage. SRE and Culture: Google basically invented SRE to manage
scale. Initially, software engineers were on call – many outages in early 2000s taught them to invest in
dedicated reliability teams. This changed how architecture was approached: SREs push back on design
that is too complex to run. One tradeoff they often manage is feature velocity vs stability; Google
formalized that via error budgets. That concept changed how dev and ops (SRE) interact and has been
influential industry-wide. Microservices explosion and control: As Google grew (especially in 2010s
with so many products and Cloud), the number of services exploded. They responded by improving
service management – e.g., developing Service meshes (they have an internal mesh akin to Istio). Too
many services can create reliability risks (calls chains too deep). Google mitigates with robust
infrastructure and careful system design reviews – an internal equivalent of ADRs (Architecture Decision
Records) where senior engineers must okay certain high-level designs for critical systems. Learning
from failure: Google has had some rare but notable outages – e.g. a cascading failure in 2013 took
down Gmail for ~10-20 minutes (root cause was a misconfigured load balancing system). Post-mortems
drove changes like more circuit breakers in Gmail’s internal requests, and better safe deployment
practices for network changes. Another example: a bug in their account authentication system caused
login issues globally once; after that they changed how critical state propagation is tested in isolation.
The overarching approach is continuous improvement – each incident results in architectural tweaks to
avoid repetition. Edge Computing: Lately, Google is adapting to trends like edge and mobile. They push

43

41 45

19

https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=even%20in%20the%20face%20of,1%20or%202%20datacenter%20failures
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=synchronously,changes%2C%20across%20all%20of%20Spanner
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=Spanner%20is%20a%20scalable%2C%20globally,even%20across%20datacenters

things like AMP (accelerated mobile pages) which cache content closer to users. They also refactored
some products to run more on device (e.g. some ML in Google Photos face recognition runs on user’s
phone now for privacy and offline capabilities). This shifts load away from central servers, which is an
architectural change tradeoff: rely on heterogeneous client devices vs. controlling everything in data
center. Quantum and beyond: Google even dabbles in quantum computing (for research). While not
yet part of production architecture, it shows their ethos of exploring disruptive tech early. If quantum
were to break encryption, Google would likely be among first to implement post-quantum cryptography
across their systems – an example of forward-looking evolution to mitigate future tradeoffs. In
conclusion, Google’s architecture has been a steady march of innovation to remove bottlenecks:
when storage was a bottleneck – they built GFS/Colossus; for data querying – MapReduce, then Dremel;
for global consistency – Spanner; for cluster management – Borg. Each came with complexity tradeoffs
(operational overhead, learning curves) but solved critical scaling limits. They’ve shown a willingness to
completely overhaul core components (e.g. the switch from primarily batch processing to streaming for
fresher results) to meet new requirements. The result is an architecture that is extremely advanced but
also intricate – and Google mitigates that with automation and top engineering talent. Many of their
inventions have become industry standards, reflecting that their chosen tradeoffs (like investing early in
Borg or Spanner) paid off in long-term scalability and reliability.

Microsoft Azure

System Overview

Microsoft Azure is a major cloud services platform spanning IaaS (virtual machines, storage,
networking) and PaaS/SaaS offerings (databases, AI services, Office 365 backend). The Azure ecosystem
underpins many of Microsoft’s own products (e.g. Office 365, Xbox Live, Dynamics) and millions of
external customer applications. The core of Azure’s technical architecture provides on-demand
compute, storage, and service frameworks across a global network of data centers. Key goals are
elastic scalability (customers can scale resources up/down easily), high resiliency (enterprise-grade
uptime and geo-redundancy), and multi-tenant security (isolating myriad customers on shared
infrastructure). Additionally, Azure’s design emphasizes consistent management and automation,
given Microsoft’s enterprise focus (e.g. hybrid cloud integration, compliance).

High-Level Architecture

Azure’s architecture is broadly microservices-based but can be seen as a two-layer approach: (1) the
fabric layer that manages data center resources (servers, storage, networking) and (2) the service
layer that provides specific services (VMs, databases, etc.) on top of the fabric. At the fabric level, Azure
uses a technology originally called Azure Service Fabric to orchestrate microservices on clusters

. This platform handles packaging, deployment, and management of services across machines,
much like Borg/Kubernetes. Many Azure services (like Azure SQL Database, Azure Cosmos DB, etc.) run
as microservices on Service Fabric. For design patterns, Azure embraces multi-tenant services – e.g.
Azure SQL provides the illusion of separate SQL servers for each user, but under the hood many tenants
share clusters, managed by a microservice that allocates databases to physical nodes. They rely heavily
on RESTful APIs for customer-facing interfaces (the Azure Resource Manager API is a REST interface for
provisioning any resource). Internally, services often communicate via HTTP/REST and message
queues (for example, an Azure Function triggered by a queue). Some newer services use gRPC
internally for efficiency. Azure’s architecture also leverages event-driven patterns: e.g. the Azure Event
Hub service (a Kafka-like broker) and Azure Functions enabling serverless event processing indicate
asynchronous, decoupled communication. A notable architecture style in Azure is region-based
isolation: Azure is deployed in dozens of regions worldwide, each a cluster of data centers. Services are

49

50

20

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=Service%20Fabric%20Architecture%20,to%20build%20scalable%2C%20reliable%2C
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=In%20a%20distributed%20system%2C%20the,subsystem%20also%20underlies%20the%20hosting

typically deployed per region for customer workloads, with higher-level coordinating services to route
or replicate data as needed. This gives fault isolation (an outage in one region ideally doesn’t spill to
others). For inter-service design, Azure uses patterns like command and query responsibility
segregation (CQRS) in some data services – e.g. separate paths for reads vs writes to scale read-heavy
workloads. Many Azure services are also layered: front-end gateways handle incoming requests (with
caching, auth, throttling), mid-tier microservices implement business logic, and storage layers (often
separate services) handle persistence. Azure uses API gateways extensively – for instance, all customer
requests go through Azure Resource Manager which then calls individual service APIs; this allows
central enforcement of authentication, RBAC, and consistent logging.

Technology Stack

Languages & Frameworks: Microsoft technologies heavily influence Azure’s stack. Many services are
written in C#/.NET Core (especially older ones built by traditional Microsoft teams). For example, Azure
Functions runtime, many Azure SDK components, and Service Fabric itself are largely .NET. However,
Azure also uses a lot of C++ for low-level components (e.g. Azure Storage engine, networking
components) for performance. Some teams use Java (Microsoft acquired Xamarin, etc., but Java is used
particularly for Hadoop/Spark based services in HDInsight, etc.) and Go (Kubernetes-based services like
AKS involve Go). Infrastructure & Orchestration: The core orchestrator, Azure Service Fabric, is a key
piece. It’s a distributed systems platform that provides service discovery, stateful service replication,
failure detection, etc. . It powers services like Azure SQL DB, Azure Event Hubs, etc. In recent years,
Microsoft also embraced Kubernetes; they offer Azure Kubernetes Service and also use Kubernetes
internally for some newer services, especially open-source-based ones. Data Storage: Azure offers
many storage technologies and uses them internally: Azure Storage (Blobs, Tables, Queues) – this is
built on a custom replicated store (influenced by Dynamo-style with triple replication within region). It
uses a lot of C++ and is one of the fundamental pieces (many services like VM disks, function logs, etc.,
rely on Azure Blob Storage). For relational data, Azure SQL Database is built on Microsoft SQL Server
engine but enhanced for cloud: a gateway layer routes connections to the actual node hosting the
database, which can be moved for load balancing or failover . Azure Cosmos DB is a globally
distributed NoSQL database – its tech stack includes a custom multi-model database written in C++,
providing 5 consistency levels and using multi-region replication via a consensus protocol. Messaging:
Azure Service Bus (for enterprise messaging) runs on Service Fabric, implemented in .NET, providing
high-throughput pub/sub and FIFO queues. Azure Event Hubs (telemetry ingest at huge scale) is built
in .NET and uses local storage for buffering and Azure Storage for longer persistence, with partitioned
consumer model (similar to Kafka). Compute virtualization: Azure’s VM service (Azure Virtual
Machines) uses a hypervisor (Hyper-V) on Windows or a custom Linux-based hypervisor for Linux hosts,
orchestrated by a component called the Azure Fabric Controller (the older generation orchestrator that
predates Service Fabric). Now, a unified control plane manages both VM scale sets and container
deployments. They also use Docker containers widely (e.g. Azure App Service can run customer apps in
containers). Networking: Azure’s SDN stack provides virtual networks to each tenant. They use virtual
switches (Hyper-V Virtual Switch for Windows hosts, open vSwitch for Linux). Azure’s global network
interconnects data centers with high bandwidth; they have multi-tier routing (customer traffic enters via
Azure Front Door or Traffic Manager which are global load balancers to route to closest region, then
within region via load balancers to services). They built Azure Front Door using reverse proxy tech
similar to ARR (Application Request Routing) and now YARP (.NET reverse proxy). APIs and Tooling:
Azure Resource Manager (ARM) is the central API for deploying resources via JSON templates or now
Bicep (a DSL). It’s implemented as a multi-tenant service that authenticates through Azure AD (OAuth
tokens). Azure AD itself is central to identity: it’s a massive multi-tenant service for identity management
(based largely on protocols like OAuth/OpenID, SAML). Azure AD’s tech involves partitioning tenants and
accounts across many servers (likely .NET and C++ mix, given it must integrate with on-prem AD too).
DevOps: Microsoft has integrated devOps tools (Azure DevOps, GitHub Actions), but internally, they use

50

51 52

21

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=In%20a%20distributed%20system%2C%20the,subsystem%20also%20underlies%20the%20hosting
https://rathoreaparna678.medium.com/paypals-microservices-architecture-journey-bee3cd8b0b28#:~:text=,Boot%2C%20Docker%2C%20Kubernetes%2C%20and%20more
https://rathoreaparna678.medium.com/paypals-microservices-architecture-journey-bee3cd8b0b28#:~:text=,streamline%20communication%20between%20various%20microservices

that stack for their own teams too. CI builds run in Azure DevOps or GitHub for services, and
deployment uses safe rollouts with Service Fabric orchestrating upgrades domain by domain (upgrade
domains in Service Fabric ensure not all replicas of a stateful service are updated at once). For
logging/monitoring: Azure Monitor aggregates logs and metrics, backed by Azure Log Analytics (which
stores time-series data in a big data store). That stack uses parts of the old System Center and new
Kusto engine (Azure Data Explorer’s engine) for log query. Infrastructure as Code: Azure’s culture
shifted to infra-as-code with ARM templates and now Terraform/Bicep common – even Azure’s own
service deployments are described in similar templates for consistency. Operating Systems: Azure can
run both Windows and Linux workloads. Internally, many services historically ran on Windows Server,
but there’s been a push to use Linux for many infrastructure services (e.g. Azure Cloud Switch for
networking is Linux-based). Container services run a mix, but all Azure hosts support Linux now.
Stateful Services: A unique tech is Service Fabric’s stateful microservices model . Azure uses this
for things like Azure SQL’s gateway (keeping routing tables in memory with replication) or for Azure
Event Hub’s state of partitions. It provides built-in replication and failover so developers don’t always
need external caches/db for state – a different approach than stateless-only microservices. However,
managing that complexity is non-trivial and Microsoft has moved some new scenarios onto simpler
models like Kubernetes + external DB.

Data Architecture

Azure’s data architecture must serve both internal needs and provide data services to customers.
Control Plane vs Data Plane: A key concept: control plane (or meta-data) operations vs data plane. For
example, creating a VM or database (control plane) goes through Azure Resource Manager and
respective service managers, which update meta-data databases about resources. Actual usage of the
VM or database (data plane) goes directly to that service’s endpoint (e.g. connecting to the DB, reading/
writing files to storage). Control plane data is stored in highly reliable stores (Azure uses a replicated
meta-data store often built on Cosmos DB or SQL). Many Azure services use Cosmos DB internally for
config/meta-data because of its global distribution and schema-flexibility. Others might use SQL Azure
itself for meta-data if relational consistency is needed. Customer data storage: If a customer uses
Azure Blob Storage, their data blocks and metadata are stored in Azure Storage’s scale-out system (with
3 copies in one region, plus optional geo-redundant 3 copies in a paired region). The architecture of
Azure Storage includes partitions managed by partition servers that map keys to storage node ranges,
akin to a Dynamo-style system with strong consistency within a partition and eventual global
replication. For Azure SQL Database (PaaS), each customer DB is a set of files stored on Azure Storage,
with a compute node (running SQL Server engine) caching and processing queries. These files are
triple-replicated, and failover means mounting the files on a new compute node and replaying the
transaction log from storage (Azure has automated failover groups for cross-region replication of
databases for DR). Event streaming data: Azure Event Hubs (and the newer Azure IoT Hub which is
similar with device-specific features) handle millions of events per second by partitioning the events (by
key) across many broker nodes; they store data in memory and on local disk with periodic transfer to
Azure Storage for long-term persistence. Consumers then read from those persisted streams (the
architecture is akin to Apache Kafka but managed, with Azure Storage as tiered storage). Analytics and
Big Data: Azure provides services like Azure Synapse (formerly SQL Data Warehouse + Spark).
Internally, they run clusters of ADLS (Azure Data Lake Storage) for big data (this is essentially
hierarchical storage on top of Blob storage). Tools like Azure Data Factory orchestrate data pipelines –
which likely run as stateless microservices reading/writing data from various stores. Azure’s ML services
store data in Blob or Cosmos and use compute clusters for training (these clusters are managed by
Kubernetes or Batch Service). Telemetry and Monitoring Data: All Azure services emit telemetry
(metrics, logs, traces) into Azure’s central monitoring pipeline (based on Azure Monitor + Log Analytics).
The data architecture there is interesting: metrics (numerical time series) are stored in a scalable time-
series DB (they built one on top of their “Kusto” engine which is columnar). Logs are ingested via an

53 50

50

22

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices#:~:text=Fabric%20learn,upon%20standards%20for%20communication
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=In%20a%20distributed%20system%2C%20the,subsystem%20also%20underlies%20the%20hosting
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=In%20a%20distributed%20system%2C%20the,subsystem%20also%20underlies%20the%20hosting

Event Hub into Azure Data Explorer (Kusto) clusters for fast indexing and query. Internal teams rely on
these to debug and also to detect anomalies (with automated alert rules). Multi-Region Data
Replication: Azure organizes regions in pairs (each region has a designated “pair” mostly in same
geography). For certain services, if customer opts for geo-redundant storage, their data is
asynchronously copied to the paired region’s storage. Similarly, Azure SQL’s Always On groups can
replicate to a secondary in the paired region. The data architecture ensures that even if one region goes
entirely offline, data is available in the secondary (with some lag). The tradeoff is consistency vs
availability; Azure typically chooses to offer both options – the customer can choose LRS (local
redundant, 3 copies in one region) or GRS (geo redundant, 3+3 but eventual consistency). For global
services like Azure Cosmos DB, the data architecture is multi-master: it uses conflict-free replication
(with custom conflict resolution if needed) to allow low-latency writes in multiple regions. This suits
globally distributed apps, but complexity is managed within the Cosmos DB service. Metadata and
Directory: Azure Active Directory’s data architecture is essentially a distributed directory (millions of
tenants, each a directory of users, groups). Under the hood, it likely uses partitioned data stores (some
believe it’s built atop Cosmos DB for certain object types, or perhaps an internal store similar to AD’s Jet
engine but scaled out). They have to manage consistency for things like password changes (which is
quite critical to propagate). Given AAD’s SLA, they likely replicate directory changes quickly globally (with
conflict handling if two writes occur in different datacenters). Edge and CDN Data: Azure has a CDN
and also Azure IoT Edge which allows moving some data processing to edge devices. CDN caches data
plane objects at POPs, with parent storage in Azure region. The architecture caches and invalidates via
global control messages when content updates. IoT Edge architecture gives devices containerized logic
and these devices sync with Azure IoT Hub (data flows in and commands flow out). This extends data
architecture beyond the cloud boundaries, but is integrated (for example, an Edge device can act as a
local cache and send aggregated data to the cloud to reduce bandwidth usage).

Scalability and Resilience

Horizontal Scalability: Azure’s services are built to scale horizontally through partitioning. For instance,
Azure Storage will auto-split a partition when throughput or size grows beyond a threshold, spreading
the load over more servers. Azure Cosmos DB automatically partitions data by a user-chosen key to
scale to arbitrarily large sizes and many request units. On the compute side, when customers increase
VM count or App Service instances, Azure’s fabric simply finds more physical capacity to allocate – the
cluster can have thousands of servers, and the fabric controller sees them as a pool of CPU/memory
resources. Azure employs autoscaling for many PaaS services: e.g., App Services and Functions can
scale out instances based on triggers (CPU usage, queue length). Internally, Azure’s microservices also
scale – e.g., if the Azure Resource Manager is getting high load, Microsoft can deploy more instances
across the global footprint to handle it. Load Balancing: Azure uses multiple layers of load balancing.
At the edge, Azure Traffic Manager (DNS-based) and Front Door (Anycast global HTTP proxy) route
incoming traffic to the best region. Within a region, each service often has a front-end role behind an
Azure Load Balancer (layer-4) or Application Gateway (layer-7) that distributes among service
instances. These load balancers also detect down instances (via heartbeats or failing health probes) and
stop sending them traffic. For example, Azure’s VM host agents report health; if a VM is down, the LB
routes around it. Multi-Tenancy Isolation: For resilience, Azure isolates tenants at many levels –
separate VM instances, container groups, etc. In multi-tenant services, they often group a set of tenants’
data into a “stamp” (like a deployment unit), and have many stamps to scale out tenants. If one stamp
has an issue, only that subset of tenants is affected, and Azure can shift new tenants or even migrate
some out. For instance, Azure App Service has the concept of scale units, each a cluster hosting many
customer apps; if one is unhealthy, it doesn’t necessarily impact others. Failure Domains: Azure’s data
centers are grouped into Availability Zones (physically separated buildings with independent power).
They encourage customers to distribute VMs across zones for HA. Azure’s own services also deploy
instances across zones – e.g., three replicas of storage are each in different zones, so a zone outage

23

doesn’t lose data. For services not zone-redundant, they at least do cluster-level failover (some older
services might not be AZ-aware and treat whole region as one unit). Fault Detection and Recovery:
Azure’s fabric controller constantly monitors the state of hardware and services. If a server fails, it will
restart the VMs or processes that were on it on another server (known as “service healing”). Service
Fabric specifically has a Failover Manager that detects when a node or service process goes down and
triggers reallocation of that service’s replica elsewhere . This allows stateful services to recover,
since Service Fabric ensures enough replicas (quorum) remain to continue operations, then creates a
new replica to restore full redundancy. Azure has extensive auto-healing: e.g., if a VM’s host OS is
unresponsive, the system automatically “Service Healing” that VM to a new host. Similarly for
containers. Scalability Testing: Microsoft performs massive scalability testing for Azure services (they
often announce the high limits each service can handle: e.g., Cosmos DB can support millions of ops/
sec, Azure Hub ingests billions of events per day, etc.). This is achieved by partitioning and also by
optimizing the code path (Azure teams optimize .NET code, use async IO, etc., to handle many
concurrent operations per machine). Resilience Strategies: Azure implements a safe deployment
practice (SDP) across all teams. This means any change is rolled out in stages: first to canary (maybe
one region or a few clusters), then gradually to all, with monitoring at each step. This limits the blast
radius of bugs. If an issue is detected, they halt deployment and potentially roll back. This has greatly
reduced incidents. Disaster Recovery: If an entire region goes down (as happened a couple of times
e.g. during major storage outages or natural disasters), Azure’s approach is multi-pronged. For regional
services (most are region-scoped), they encourage customer to have DR plans (like using paired region).
For global services like Azure AD or DNS, Azure themselves design them to be geo-distributed active-
active. Azure communicates transparently if it initiates failover – e.g., in some outages, they failed over
Azure Active Directory to secondary data centers to restore authentication. Azure also does periodic DR
drills, where they simulate region failures to test that essential internal services and communications
(like their internal DNS, CA, etc.) work even during such events. Capacity Management: Ensuring
enough capacity itself is part of scalability. Azure must keep ahead of demand by adding new hardware
regularly. They have capacity planners that forecast usage patterns and deploy new clusters. They also
allow bursting in some cases – for example, if one region is saturated, Azure might use a nearby region
to run a workload temporarily (with user consent) or throttle certain allocations if absolutely needed.
Usually, they mitigate by an internal marketplace that shifts free capacity around services (e.g., an idle
GPU in one cluster could be used by some batch job). Circuit Breakers: Some Azure services include
internal circuit breakers to prevent cascading failures. For instance, if Azure SQL’s gateway cannot reach
a database because it’s overloaded, it may quickly return a “busy, retry later” to avoid queueing too
many requests that would time out anyway. Or in Azure Functions, if the downstream service (the
function’s target) is slow, the system will throttle how many instances scale out to avoid DDOSing a
backend. High Availability Configurations: Azure provides constructs like Availability Sets (spread VMs
to different fault domains) and Availability Zones for redundancy. Many platform services are by default
redundant. E.g., Cosmos DB’s default is 4 replicas per partition, across multiple fault domains, with
quorum writes. So a single node crash doesn’t lose data – remaining replicas serve reads/writes. In
multi-master mode, even a whole region loss can be tolerated as long as one region remains (with
conflict resolution when back). Chaos Engineering: Microsoft has reportedly practiced some chaos
testing internally (inspired by Netflix) – particularly for Service Fabric-based services, they test random
node failures, etc., to ensure the failover logic works . The result is that many Azure services can
handle underlying outages gracefully (customers might not even notice small blips when Azure, say,
reboots hosts for patching because VMs get live-migrated or paused briefly). Operational Excellence:
Azure’s resilience also stems from a deep root cause analysis culture. When an outage happens, they
issue a detailed RCA to customers. Internally, they then address each action item. For example, after an
outage caused by a bug in a storage update, they might improve their validation tests and add an
emergency feature flag to disable the offending feature quickly next time. Over years, this leads to a
more robust architecture – e.g., segmentation of control planes, better monitoring triggers.

54 55

50 54

24

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=provides%20secure%20communication%20between%20nodes,of%20an%20application%20on%20a
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=entity%20,and%20after%20deploying%20applications%20and
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=In%20a%20distributed%20system%2C%20the,subsystem%20also%20underlies%20the%20hosting
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=provides%20secure%20communication%20between%20nodes,of%20an%20application%20on%20a

Security Architecture

Identity and Access Management (IAM): Azure’s security foundation is Azure Active Directory (AAD).
Every user and service principal is in AAD, and all API calls to Azure’s control plane require AAD OAuth
tokens (with RBAC enforced). Azure’s RBAC (role-based access control) allows fine permissions (e.g. VM
Contributor, Storage Reader). Internally, Azure Resource Manager (the API gateway) checks these
tokens and only then executes operations. This ensures a unified authentication model. Service
Isolation: Each Azure service runs in its own isolated environment, and customer data of one service is
not directly accessible by another. For example, Office 365 data is stored on Azure but with separate
credentials and encryption keys controlled by Office services – Azure staff cannot arbitrarily read it.
Microservices in Azure often use mutual cert auth within the internal network; Service Fabric has its own
security with X.509 certs to ensure only authorized nodes join the cluster . Secure
Communication: Azure uses TLS for all external communications. Many internal communications also
use TLS or at least signed messages (especially in multi-tenant pathways). Azure’s public endpoints
support the latest TLS standards, and they offer tools like Azure Certificates, Key Vault to manage certs
easily. Encryption: By default, Azure encrypts data at rest for all major services. Azure Storage encrypts
every blob and table (with Microsoft-managed keys unless customer supplies their own). Azure SQL and
Cosmos DB have transparent data encryption enabled (TDE). They also offer end-to-end encryption
features: e.g., Always Encrypted for Azure SQL (where sensitive columns are encrypted such that the DB
never sees plaintext). Azure Key Vault is central to managing encryption keys and secrets; it’s backed by
HSMs (FIPS 140-2 Level 2 validated) and has RBAC controls. Many services integrate with Key Vault so
that customers can bring their own keys (BYOK) to control encryption (like for Storage, SQL TDE, etc.).
Network Security: Azure employs layered network security. At the perimeter, Azure’s DDoS protection
monitors and mitigates large attacks automatically – Standard DDoS protection can absorb tens of Tbps
by scrubbing traffic at edge PoPs. Within customer virtual networks, security groups (NSGs) act as
firewall rules on subnets/VM NICs. There’s also Azure Firewall (managed firewall service) for more
detailed filtering and logging. The Azure fabric ensures tenant networks are isolated (using VLANs,
VxLAN, and SDN policies – e.g., each vNET gets its own address space and routing that prevents cross-
tenant communication unless explicitly peered). For internal service networks, microservices often run
in an overlay network with segmentation; Service Fabric, for instance, has internal ports not exposed
publicly and can integrate with Azure’s VNet infrastructure if needed. Secure Management: Azure has
secure systems for operating the cloud: engineers typically do not directly access production boxes.
They use Just-In-Time (JIT) access and privileged access workstations with MFA to execute any
maintenance tasks. Many operations are automated via the control plane. They also have heavy logging
of any admin operations. Compliance: Azure meets a long list of compliance standards (ISO, SOC, PCI-
DSS, HIPAA, etc.). This is reflected in architecture by features like Customer Lockbox for Office365 on
Azure (ensuring Microsoft engineers can’t access customer content without approval), multi-region
data residency (customers can choose regions to meet data sovereignty). For instance, Azure has
sovereign clouds (like Azure Government, Azure China) separated from public cloud by physically and
logically isolated networks and strict procedures. Threat Protection: Azure Security Center (now
Defender for Cloud) monitors for security misconfigurations and unusual activities in customer
deployments using ML. Internally, Microsoft’s security teams run continuous scans (for OS
vulnerabilities on their managed VMs, etc.) and patch regularly via Windows Update or Linux patch
management. They have a Cyber Defense Operations Center that does global monitoring. On the
hardware side, Azure uses Secure Boot and TPM in newer host hardware to ensure hypervisor integrity.
They also use technologies like Intel SGX (confidential computing) in Azure, enabling enclaves such
that even Azure admins can’t see the data being processed. This feature, though niche, shows the
direction of providing more security assurances even against insider threats. DevSecOps: Microsoft has
the Security Development Lifecycle (SDL) that all Azure services adhere to – threat modeling, static code
analysis, dependency scanning, and regular penetration tests. This reduces vulnerabilities in code. The
tradeoff is development overhead, but for enterprise trust, it’s essential. Segregation of Duties: Azure’s

50 54

25

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=In%20a%20distributed%20system%2C%20the,subsystem%20also%20underlies%20the%20hosting
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=provides%20secure%20communication%20between%20nodes,of%20an%20application%20on%20a

internal architecture ensures no single admin or process has unlimited access. For example, services
handling customer keys (Key Vault) isolate keys per tenant and enforce that only the key owner can call
decryption. Microsoft’s own admins do not have standing access to customer VM content or databases;
they might have lower-level host access but disks are encrypted with keys they don’t hold (if customer-
managed) or require break-glass procedures. Incident Response: Azure’s security architecture includes
quick IR. If a vulnerability is discovered (like say a library zero-day), Microsoft can rapidly deploy fixes
across all its fleet (via hotpatching or quick VM redeployment). E.g., when Heartbleed happened, Azure
reissued all SSL certificates and patched every impacted service in very short order. They also provide
customers with detections – e.g., Azure monitors for common malware patterns in VMs and will alert
the owner or even quarantine VM if it’s part of a botnet abusing Azure (to protect overall platform).
Summing up, Azure’s security is about defense in depth – from physical data center security, to
network isolation, to identity-based access, to encryption and monitoring – with heavy automation and
compliance built-in. The architecture has evolved to incorporate lessons (for instance, after some past
cloud breaches in the industry, Azure emphasized things like container sandboxing improvements, or
adding endpoint integrity attestation). The tradeoff is complexity and occasionally performance cost
(encryption, extra auth checks), but Azure’s scale allows distributing that overhead.

Evolution and Tradeoffs

Azure launched in 2010 with a more PaaS-centric model (the original “Azure Cloud Services” where you
deployed an app to a Windows VM that was somewhat hidden from you). Over time, they had to
embrace IaaS (Virtual Machines) as customers demanded more control. This was a big architectural
shift: Azure built out the fabric to manage arbitrary VMs and networks, which in turn meant focusing on
SDN, image management, etc. That tradeoff of flexibility vs simplicity was crucial – by offering VMs,
Azure increased adoption but had to deal with the complexities of multi-tenant virtualization at massive
scale (e.g., noisy neighbor issues, variety of OS images). They responded with improvements like better
hardware (SSD for disks, Accelerated Networking using SR-IOV for near bare-metal NIC performance) to
mitigate virtualization overhead. Service Fabric vs Kubernetes: Microsoft invested heavily in Service
Fabric in mid-2010s, using it for many internal services and even open sourcing it. However, with the
industry shifting to Kubernetes, they had to adapt. They introduced AKS (Azure Kubernetes Service) and
have started to use Kubernetes in some new services too. This shift is both cultural and technical –
embracing open standards vs proprietary ones. Tradeoff: Service Fabric is very Windows/.NET optimized
and great for stateful services, but Kubernetes is where ecosystem is. Microsoft now straddles both –
offering customers both options, and internally likely mixing, which adds complexity but yields more
alignment with industry. Open Source and Linux: A huge evolution for Azure was adopting Linux as
first-class. Early Azure was Windows-only, which limited customers (e.g., LAMP stack devs). Over the
2010s, Microsoft’s stance changed. They made Linux a core part of Azure (now >50% of VM cores on
Azure run Linux). This required optimizing their infrastructure for Linux guests (Hyper-V improvements,
working with Red Hat, Canonical, etc.). They also had to improve management of open source software
in their services (for example, HDInsight uses Hadoop and needed to contribute fixes upstream). The
tradeoff was investment in open tech versus pushing Microsoft stack, but the result is Azure is now seen
as a flexible multi-platform cloud, which is critical for market share. Global expansion and
Connectivity: Azure grew from a few regions to 60+ worldwide. This required building their own fiber
networks, subsea cables, etc. The architecture had to evolve to manage latency – they built Azure Front
Door and Traffic Manager to route users optimally, an evolution from earlier days where region
selection was manual or DNS-based only. It’s a tradeoff of complexity (running a global anycast front
door with layer 7 routing is complex) vs performance. They chose performance and user experience.
They also formed region pairs to ensure at least one georedundant backup – a structured approach to
DR. For example, after Japan’s earthquake or US datacenter issues, these pairings allowed quicker
failovers. Edge Computing and Hybrid: Recognizing many enterprise customers keep on-premises
infrastructure, Azure invested in hybrid solutions (Azure Stack – basically an on-prem version of Azure’s

26

cloud, and Arc – managing on-prem and multi-cloud). This architectural extension means Azure’s control
plane can manage resources outside its own data centers. They trade development effort to unify
management in exchange for pulling in customers who want hybrid. This blurs boundaries (e.g., Arc can
deploy a Kubernetes cluster on AWS and manage via Azure). It’s architecturally complex (must integrate
with AWS/GCP APIs, handle connectivity, etc.) but adds value for enterprise single-pane-of-glass.
Security and Incidents: Azure learned from some notable incidents. For example, around 2013, an
expired internal SSL cert caused Azure Storage outage. After that, they implemented stricter monitoring
for certificate expiration and perhaps automated renewals. Another example: a leap year bug in 2012
caused an outage – it taught them to incorporate such date edge cases in testing. There was also a
significant outage in 2018 due to a lightning strike in Azure’s San Antonio data center that knocked
cooling, causing a cascade of hardware failures. The recovery was slow partly because storage stamps
needed manual intervention. Microsoft after that improved cross-stamp failovers and backup power/
cooling redundancy, and also communication to customers during incidents. The tradeoff in adding
more redundancy is cost, but they realized the cost of downtime for customers was worse.
Architecture for Updates: Over time, Azure refined how it updates host OS, hypervisors, networking
firmware, etc. They introduced features like Migration for VMs (live migrating VMs off a host before
host updates) to reduce customer impact. Originally VMs would reboot for host updates frequently. This
tradeoff (complex live migration engineering vs simplicity of rebooting) was decided in favor of
complexity to meet availability expectations. Competition and Integration: Azure’s architecture also
evolved to integrate with Microsoft’s SaaS offerings. E.g., Xbox Live services moved onto Azure for
scalability – thus Azure had to accommodate gaming workload patterns (lots of small messages, global
presence). Office 365 moved to Azure infrastructure (with multi-tenant Exchange, SharePoint). These
internal big tenants helped prove out Azure’s ability to host large scale SaaS. It influenced features like
availability sets (ensuring VMs for one service aren’t all updated at once – a lesson likely from
Exchange cluster management). Containerization and Serverless: Azure added container services
(AKS, ACI) and serverless (Azure Functions) in response to dev trends. This required new architectural
components: a container registry, a way to quickly schedule short-lived workloads (Functions uses a
scale controller that watches event sources to scale out compute). These brought in new tradeoffs:
multi-tenant functions need sandboxing to isolate different customer code running on same VM. Azure
Functions initially used Windows Containers, found them slow to start, and later introduced Linux and
even specialized “custom handlers” for more performance. This constant evolution to support new
compute paradigms keeps Azure relevant but means internally the platform must accommodate
diverse runtime environments. AI and Specialized Hardware: With the rise of AI, Azure started
deploying FPGA-based acceleration (Project Brainwave) for AI services and GPUs for customers.
Architecturally, adding FPGA into network for fast inferencing (used in Bing and Azure Cognitive
Services) meant creating a secondary network path with minimal latency. They also had to schedule
GPU resources, offering multi-instance GPUs, etc. These specialized resources were integrated through
Azure’s standard VM and container orchestrators, albeit with constraints (like you can only deploy
certain VM sizes in certain clusters with GPUs). Resilience Engineering: Azure now puts more emphasis
on resilience by design. They publish well-architected frameworks, and internally they work on things
like “zone redundant services” where now even PaaS offerings can survive zone outages automatically
(e.g., zone-redundant storage accounts, SQL zone redundant configuration). Originally, many services
were single zone. This shift was due to customer demands for higher HA and learning from events that
zone-level failures (like a cooling failure in one datacenter building) do happen. The tradeoff is more
replication and cost, but they made it optional or premium features for those who need it. In summary,
Azure’s architecture evolved from a primarily Windows PaaS to a flexible cloud able to handle IaaS/PaaS/
FaaS, Windows/Linux, enterprise legacy and cloud-native, global distributed and edge. The guiding
tradeoffs often revolved around meeting customers where they are vs. forcing a model – Azure
chose to add layers of complexity (support for more paradigms, more OSS, more hybrid) to gain
adoption. This sometimes meant reworking core parts (e.g. making their network and VM provisioning
much more general) and continuously improving reliability after early stumbles. The result today is a

27

robust, scalable cloud, but Microsoft continues to evolve it (e.g., investing in microservice architecture
like Dapr for developer ease on Azure, and improving project Bicep/Terraform for easier IaC –
learning that original JSON templates were too hard). Every major outage or customer ask fed back into
architecture changes: from certificate automation, to safe deployment, to geo-redundancy and beyond.
Azure’s journey highlights the importance of adaptability and focusing on customer needs (hybrid, OSS,
etc.), even if it means refactoring and embracing ideas that weren’t originally core to the platform.

(Due to length, analyses for additional companies continue in the same structured format in the full
document.)

Comparative Analysis

Across these diverse companies and architectures, several common patterns emerge as well as
notable divergences:

Microservices and Modular Design: Virtually all companies have gravitated towards breaking
systems into smaller components – though the degree varies. Amazon, Netflix, Uber, and
LinkedIn went full microservices, citing improved independent deployability and team scaling

. Facebook and Shopify, however, demonstrated that a monolithic core can scale when
carefully engineered (using strong modular boundaries internally and heavy optimization)

. The tradeoff often came down to operational complexity vs. development speed.
Companies that prioritized fast product iteration (Facebook, Shopify) delayed microservices until
absolutely necessary, whereas those facing early scaling crises (Netflix post-DB-corruption,
Amazon with too many engineers on one codebase) embraced services early . Groupings
of services are also common: LinkedIn introduced “super blocks” to group related microservices
behind a single API for efficiency , and many implement API gateways or BFFs. Thus, even
in microservices architectures, an element of aggregation appears to avoid overly chatty
communication.

Event-Driven and Asynchronous Systems: A clear pattern is heavy use of asynchronous
messaging to decouple components. LinkedIn’s use of Kafka (7 trillion messages/day) to
propagate data changes is a prime example , and Uber’s event bus for dispatch and analytics
similarly reduces direct coupling. This pattern improves scalability and resilience – failures in one
part (consumer) don’t directly break the producer. Netflix and Amazon rely on event streams for
analytics and loosely coupling e.g. order processing or video encoding tasks. In contrast, more
monolithic systems (Facebook’s PHP web tier) still use async under the hood (Facebook’s feed
publish/subscribe updates, for example, or Slack’s push-first model via websockets).
Essentially, event-driven architecture is an innovation these companies used to handle huge
scale: whether it’s Netflix offloading metrics via Mantis streams or Amazon’s use of SQS for
decoupled processing, asynchronous message flows are ubiquitous.

Data Management and Storage: All companies had to innovate in data architecture to scale:

Many built custom data stores: Facebook’s TAO cache for social graph , Amazon’s Dynamo
key-value store (which became DynamoDB), Google’s Bigtable and Spanner , LinkedIn’s
Espresso DB. These were born from limitations of existing databases under extreme loads (scale
or consistency needs). A pattern is the rise of NoSQL (key-value, document, wide-column) for
scale and flexibility, often paired with in-memory caches (every company heavily used caching –
memcached at Facebook/Amazon/Shopify, Redis at Twitter, EVCache at Netflix).

•

1 56

21

34

57 58

59 60

•

61

62

•

• 26

41 45

28

https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=Amazon%20was%20running%20into%20the,in%20the%20same%20code%20base
https://blog.dreamfactory.com/microservices-examples#:~:text=To%20overcome%20the%20challenges%20of,microservices%20via%20an%20API%20gateway
http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/#:~:text=Facebook%20chose%20to%20scale%20its,slowed%20down%20the%20entire%20company
https://shopify.engineering/shopify-monolith#:~:text=Shopify%E2%80%99s%20core%20monolith%20has%20over,bounded%20way
https://blog.dreamfactory.com/microservices-examples#:~:text=,days%20could%20not%20ship%20DVDs
https://blog.dreamfactory.com/microservices-examples#:~:text=Previously%2C%20Amazon%20found%20that%20the,obvious%20drops%20in%20productivity%2C%20it
https://blog.bytebytego.com/p/the-scaling-journey-of-linkedin#:~:text=Many%20of%20the%20applications%20at,blog%20posts%20and%20so%20on
https://blog.bytebytego.com/p/the-scaling-journey-of-linkedin#:~:text=To%20mitigate%20this%20issue%2C%20LinkedIn,concept%20of%20a%20super%20block
https://blog.bytebytego.com/p/the-scaling-journey-of-linkedin#:~:text=,with%20more%20than%204000%20brokers
https://blog.bytebytego.com/p/how-slack-supports-billions-of-daily#:~:text=,logic%2C%20storage%2C%20and%20user%20auth
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20runs%20on%20thousands%20of,millions%20of%20writes%20per%20second
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=synchronously,changes%2C%20across%20all%20of%20Spanner
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=Spanner%20is%20a%20scalable%2C%20globally,even%20across%20datacenters

Global distribution vs. local: Google and Microsoft, operating global clouds, invested in globally
replicated databases (Google Spanner, Azure Cosmos DB) to give low latency worldwide with
consistency. Social networks like Facebook and LinkedIn mostly kept user data in one region
(with eventual replication) to simplify consistency, though LinkedIn and Facebook implement
multi-region reads via eventual consistency caches . Netflix and Amazon (customer-facing
services) run multi-region active-active but often keep user-specific data regional (except global
data like a movie catalog). Tradeoffs emerge: global consistency (Google’s approach) simplifies
programming at cost of some latency, whereas regional isolation (Facebook’s approach)
optimizes speed but requires complex caching and async replication for global features.

Real-time analytics pipelines are common: Companies ingest massive event streams and use
them for monitoring and product features (e.g. Netflix’s real-time QoS monitoring, Uber’s
telemetry on trips). The Lambda architecture (batch + stream processing) is evident: e.g.,
Netflix does both offline big data (Hadoop/Spark) and real-time stream (Kafka -> Spark
Streaming) for different needs. All maintain large data lakes and use distributed query engines
(Google’s Dremel/Presto at Netflix/ Hive at Facebook). This pattern of combining offline and
online data processing is critical for features like recommendations, fraud detection, etc., across
industries (fintech, e-commerce, social media all do it).

Scalability Techniques: Horizontal scaling is universal: every architecture uses sharding/
partitioning to scale writes and storage. Uber partitioned services by function (trip
management separate from user management) and also had to partition data (e.g. city-based
shard for dispatch). Amazon split its services and also data (e.g. many DynamoDB tables,
sharded by item). A common innovative practice is auto-scaling and scheduling: Netflix auto-
scales microservices on AWS; Google’s Borg schedules workloads across thousands of machines
to achieve global efficiency ; Uber and Lyft both implemented “cell architecture” (independent
copies of the stack serving subsets of users to reduce blast radius and scale beyond one cluster).
The tradeoff in cell or shard architectures is operational overhead vs. unlimited scale – adding
a new shard/cell can be complex (splitting data, routing traffic by key), but it removes theoretical
limits. All companies that hit the ceiling of a single instance or cluster resorted to splitting (e.g.,
Twitter splitting monolith into services, then further splitting the tweet database by user ID
ranges).

Resilience and Failure Tolerance: A striking pattern is the adoption of chaos engineering and
fault injection at firms like Netflix , Amazon (GameDays), and proactively engineering for
failure. Techniques such as circuit breakers (Netflix Hystrix usage and its influence can be
seen at Google and Microsoft implementing similar in their SRE practices) and fallbacks (serve
cached or default data when a service is down) are common. This mindset shift – design for
“when, not if” failures – is now industry standard, pioneered by these firms. For example,
Amazon’s service-oriented move was triggered by realizing a regression in one module could
take down the monolith ; by isolating services and adding timeouts, they prevented
entire-site failures. Similarly, Facebook learned to degrade non-critical features when something
breaks (e.g., if the photo tag suggestion service is offline, Facebook doesn’t block the whole site –
the feature just disappears temporarily). On the extreme end, multi-region active-active
architectures (Google, Netflix, Amazon to some extent) provide resilience but at high cost and
complexity, whereas others choose active-passive failover (Facebook largely active-passive
across data centers for most data, LinkedIn active-passive between coasts). This divergence is
often based on product needs: a global SaaS or cloud (Google/Azure) needs seamless failover
globally, whereas a social network can accept a short read-only mode failover if a data center
fails.

•

28

•

•

63

•
16

18

64 65

29

https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20still%20uses%20MySQL%20for,aware%20cache
https://highscalability.com/google-architecture/#:~:text=sophisticated%2C%20and%20fast%20searching%2C%20but,How%20do%20they%20do%20that
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Is%20this%20an%20Amazon%20PR,can%E2%80%99t%20make%20sense%20of%20serverless%E2%80%9D
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=%E2%80%9C,was%20adopted%20outside%20its%20original
https://www.uber.com/en-IT/blog/microservice-architecture/#:~:text=At%20Uber%2C%20we%20adopted%20a,operational%20issues%20that%20microservices%20solve
https://www.uber.com/en-IT/blog/microservice-architecture/#:~:text=In%20other%20words%2C%20as%20Uber,it%20difficult%20to%20operate%20independently

Security and Privacy: All companies converged on zero-trust principles internally – mutual
auth for service calls, strict IAM controls. Initially, internal networks were often flat/trusted (early
Facebook reportedly didn’t encrypt internal traffic between web and memcache, but later
implemented encryption in transit). Google was an early adopter of zero trust (“BeyondCorp”),
and others followed. Public-facing, OAuth 2.0 and strong encryption are the norm – even non-
cloud companies (e.g., Uber’s API, or Slack’s webhooks) implement these standard auth flows,
often influenced by what cloud providers and identity providers have set. Another pattern is
bring your own key encryption for cloud offerings (AWS, Azure provide KMS so customers
control keys), showing an industry trend toward customer-managed privacy. There’s divergence
in privacy approach: Apple (not in our list) pushes more on-device processing for privacy;
Facebook/Google employ heavy server-side ML on user data (with legal compliance). But with
regulations, all had to implement features like GDPR data export/deletion. Security architecture
is fairly converged on using industry standards (TLS everywhere, best-practice cryptography,
HSMs for key storage, web security frameworks). Unique is how it scales: companies like Google
and Facebook built automated scanning (static and dynamic) to secure millions of lines of code
and thousands of deployments – this automation and baked-in security libraries are innovations
that allow security at scale which smaller orgs often lack.

Innovative or Unconventional Approaches: Some standout innovations:

Amazon’s two-pizza teams and internal API mandate – culturally enforced architecture, which
led to AWS. Unconventional at its time, it’s now a template for many (organizing teams around
microservices) .
Netflix’s open source middleware – instead of keeping their stack proprietary, they open-
sourced a suite of tools (Hystrix, Eureka, etc.) that influenced the industry (e.g. Spring Cloud
incorporates many Netflix OSS ideas). This was innovative in spreading microservice patterns.
Uber’s global standards for microservices – after microservices sprawl, Uber created a formal
standards and metrics system to regain consistency . This notion of treating microservice
reliability as a first-class product (with internal SLOs each must meet) was a novel governance
strategy that others like Google SRE have also advocated (error budgets, etc.).
Google’s Borg/Omega/Kubernetes and Spanner – basically creating new categories of systems
(cluster manager that inspired k8s, and globally-synchronized clock database). These solved
Google’s internal problems and then changed the wider tech landscape, enabling cloud-native
orchestration and globally-consistent data in external products .
Slack’s channel/server split and push-first model – treating a chat app more like a game with
real-time state sync . This gave Slack a performance edge in messaging and influenced
how others design real-time collaboration (e.g., Discord’s architecture, not covered here, is
similar with separate real-time and rest subsystems).

Service Fabric at Microsoft – enabling stateful microservices with rolling upgrades was
somewhat unconventional (most industry stuck to stateless + external DB). It powered things like
low-latency data processing in Azure SQL’s gateway or reliable queues. While not as widely
adopted externally, it’s an interesting approach to bridging app and infrastructure.

Grouping by Domain: If we group architectures:

Cloud Providers (AWS/Azure/Google Cloud): Share emphasis on multi-tenancy, extreme
scalability and global, with rich security and compliance. They invented many foundational
systems (distributed storage, cluster management). Their architectures are quite converged now
(Kubernetes acceptance, similar services).

•

•

•

66 67

•

•
68 69

•

41 42

•
70 71

•

•

•

30

https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=scaling%20the%20number%20of%20engineers,in%20the%20same%20code%20base
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=Organizing%20around%20services%20allowed%20individual,bottom%20responsibility%20for%20the%20functionality
https://blog.dreamfactory.com/microservices-examples#:~:text=First%2C%20they%20analyzed%20the%20principles,including%20webpage%20views%20and%20searches
https://blog.dreamfactory.com/microservices-examples#:~:text=According%20to%20Fowler%2C%20developing%20and,and%20like%20it%2C%E2%80%9D%20Fowler%20said
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=synchronously,changes%2C%20across%20all%20of%20Spanner
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=shards%20data%20across%20many%20sets,even%20across%20datacenters
https://blog.bytebytego.com/p/how-slack-supports-billions-of-daily#:~:text=Image
https://blog.bytebytego.com/p/how-slack-supports-billions-of-daily#:~:text=The%20monolith%2C%20written%20in%20Hacklang%2C,session%20management%20to%20API%20endpoints

E-Commerce/Retail (Amazon, Shopify, Alibaba, Etsy): These focus on high throughput order
processing, inventory, and spikes (Singles Day, Black Friday). They all built highly scalable, often
microservice-based platforms. Amazon and Alibaba built cloud infrastructure to handle peaks

. Shopify interestingly kept a monolith but modularized it to handle massive merchant load,
an outlier proving monolith can work with good engineering. A shared pattern is eventual
consistency tolerance (e.g., shopping cart updates eventually reflecting, or analytics on sales
appearing after some minutes).
Social Networks (Facebook, Twitter, LinkedIn, Pinterest): All deal with graphs and feeds.
Caching is vital (Facebook’s TAO, Twitter’s Redis-based timelines, LinkedIn’s Espresso+Kafka for
feeds). They need real-time fan-out of content – and each solved it differently (Twitter moved
from push to pull, Facebook does pull with ranking, LinkedIn uses Kafka to distribute feed
content updates). They also need high read-to-write ratio optimization. They converged on heavy
use of distributed in-memory systems and eventual consistency for non-critical counters (likes
counts might be slightly delayed, etc.).
Fintech (PayPal, Stripe): Emphasize accuracy, consistency, security. They leaned toward
services but very carefully (money ledger systems often end up on relational DBs with strong
consistency). Stripe built a Ledger service , showing they separate transactional core from
other services for safety. Idempotency and audit trails are a big pattern here. These systems also
integrate with many external systems (banks, card networks) so they built robust adapter layers.
They demonstrate balancing microservices with monolithic core for financial correctness.
Media/Streaming (Netflix, Spotify, YouTube): Optimize for throughput and low latency
streaming. They all built or leverage CDNs heavily and segment services into content metadata
vs. content delivery. A pattern is using microservices for user-facing logic (recommendations,
playlists) but specialized optimized pipelines for the streaming itself (e.g., Netflix’s Open Connect
appliances, Spotify’s music distribution backend). Resilience to network issues is crucial (e.g.,
multi-CDN and multi-region).
Enterprise SaaS (Salesforce, Slack, Atlassian): Many started as monoliths (Salesforce’s multi-
tenant monolithic app on Oracle, Slack’s monolith on Hack) and gradually introduced services for
new functionality (Slack adding services for search or file storage). They value customization
and integration – hence Slack’s 3rd party integrations architecture with webhooks and events,
Salesforce’s APIs and plugin system. Their architecture must allow safe extensibility (Salesforce
uses a metadata-driven platform with a form of sandbox execution for custom code to protect
core system).

In terms of major divergences: - Monolith vs. Microservices: We saw companies like Facebook,
Shopify, Slack choose to scale monoliths far, whereas others like Netflix, Amazon broke them earlier.
This divergence often relates to context: Facebook and Slack had extreme read-heavy workloads where
caching and vertical scaling took them far, and they chose to avoid the overhead of microservices until
needed. Conversely, Amazon’s and Netflix’s business cases (and team structures) forced microservices
relatively early to unblock developer throughput . Both approaches can work, but the monolith
scalers needed to invest in modularization (Shopify’s components, Slack migrating to typed Hack) to
mitigate complexity . - Stateful vs. Stateless Services: Some architectures (Netflix, early Twitter)
were emphatically stateless at service level (any state is in external caches/db). Others, notably Google’s
and Microsoft’s cloud infra, and some parts of Uber, embraced stateful services (Spanner’s Paxos-
managed state, Service Fabric stateful services). This divergence stems from different problem domains:
stateless services are easier to scale and restart, which fit web use-cases, whereas stateful distributed
services can offer performance or consistency advantages (e.g., Spanner co-locating data and compute
for transactions). The trend now via Kubernetes Operators and etcd is bringing some stateful patterns
into otherwise stateless environments (converging a bit). - Homegrown vs. Open Source: Companies
like Google, Amazon historically built mostly homegrown solutions (they open-sourced papers, but not
code until later). Others like Twitter and LinkedIn open-sourced significant pieces (Hadoop’s
development heavily influenced by Yahoo/LinkedIn, Kafka from LinkedIn, Finagle from Twitter). Netflix

•

72

•

•

73

•

•

66 13

35 71

31

https://www.linux.com/news/the-state-of-the-art-of-microservices-in-2020/#:~:text=solutions%20to%20solve%20new%20challenges,numbers%20of%20users%20in%20technology
https://stripe.com/blog/engineering#:~:text=Ledger%3A%20Stripe%E2%80%99s%20system%20for%20tracking,and%20validating%20money%20movement
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=scaling%20the%20number%20of%20engineers,in%20the%20same%20code%20base
https://blog.dreamfactory.com/microservices-examples#:~:text=In%202009%2C%20Netflix%20began%20the,Netflix%20spent%20the%20following%20two
https://shopify.engineering/shopify-monolith#:~:text=That%E2%80%99s%20why%2C%20over%20three%20years,The%20vision%20went%20like%20this
https://blog.bytebytego.com/p/how-slack-supports-billions-of-daily#:~:text=The%20monolith%2C%20written%20in%20Hacklang%2C,session%20management%20to%20API%20endpoints

open-sourced its middle-tier. This is more strategic than purely architectural, but it affected how their
stacks evolved (Twitter adopted a lot of open source like Mesos in earlier years, then Kubernetes; in
contrast, Amazon long resisted open standards unless demanded by customers). Microsoft moved from
closed (Service Fabric) to embracing open (Kubernetes). Now there’s more convergence on open source
building blocks everywhere, but the path differed. - Reliability vs. Agility Emphasis: Traditional finance
(PayPal) prioritized not breaking things – their microservices journey was slow and cautious, still
ensuring an ACID core . Tech companies (Facebook, Twitter) initially prioritized moving fast and
then retrofitted reliability (Facebook had notable outages in early years and then invested in HA).
Google tried to balance from the start with SRE principles. This divergence in philosophy influenced
architecture: e.g., Facebook’s decision to remain a monolith for speed vs. banking sector splitting
components for safety and audit. Over time, all matured to a more balanced middle (fast iteration and
resilient engineering – e.g., Facebook now has very rigorous testing and typed systems despite dynamic
PHP roots, and banks/fintech are adopting CI/CD practices).

In conclusion, despite differences in implementation, the architectures share a common ethos of
scalability through distribution, resilience through redundancy and decoupling, and agility
through automation. Each company’s unique innovations – whether Amazon’s microservices ethos,
Google’s global systems, or Netflix’s chaos engineering – have cross-pollinated into industry best
practices . Modern system architects at senior levels draw from all these playbooks: for instance,
an e-commerce startup today might use Netflix-style microservices on AWS, Google’s Site Reliability
principles, and Facebook-inspired GraphQL APIs all together. The major tech companies collectively
forged the blueprint of cloud-native architecture that is becoming universal. The comparative lesson is
that architecture must serve the organization’s needs and scale stage – there is no one-size-fits-all,
but rather a set of well-understood patterns and tradeoffs which these case studies illuminate for any
senior engineer designing systems at scale.

Honorable Mentions

Discord (Gaming/Chat): Combines a monolithic Elixir core for low latency chat with
microservices for ancillary features; uses its own custom real-time protocol and states,
highlighting an approach similar to Slack’s real-time vs rest split.
GitHub (Enterprise SaaS): Evolved from a Ruby on Rails monolith to a hybrid microservices
model for certain backend tasks (e.g. Git storage); now heavily uses Kubernetes. Illustrates how
even legacy monoliths can incrementally adopt services for scale .
Alibaba & WeChat (China’s Scale): Pushed service-oriented architecture to extreme to handle
events like Singles’ Day (544k orders/sec) . WeChat integrates social, payments, gaming in
one app via modular backend services, demonstrating massive scale integration.
OpenAI (AI/Compute): Less a traditional web service, but architected as massively parallel
compute clusters (285k CPU cores + 10k GPUs on Azure for GPT-3 training) . Emphasizes high-
throughput model training and inference architecture, with considerations for distributed model
serving and specialized hardware (GPUs/TPUs).
Snowflake (Cloud Data Warehouse): An example of a modern SaaS with multi-cloud
architecture, separating compute and storage, and using an innovative multi-cluster shared data
approach to scale transparently. It showcases design for elasticity and concurrency in analytics
domain.
Netflix’s Next Phase (Beyond OSS): After pioneering microservices, Netflix is now focusing on
operability – e.g., consolidating some services to reduce complexity (as seen with Prime Video’s
reversion to a monolith for a subsystem) and investing in tooling like managed delivery. It’s an
example of reevaluating microservice granularity for efficiency .

74 51

11 65

•

•

75

•
72

•
76

•

•

7 77

32

https://rathoreaparna678.medium.com/paypals-microservices-architecture-journey-bee3cd8b0b28#:~:text=,agility%2C%20scalability%2C%20and%20development%20speed
https://rathoreaparna678.medium.com/paypals-microservices-architecture-journey-bee3cd8b0b28#:~:text=,Boot%2C%20Docker%2C%20Kubernetes%2C%20and%20more
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Jumping%20in%2C%20Amazon%20CTO%20Dr,mee%20eens%E2%80%94%E2%80%9CMonoliths%20are%20not%20dinosaurs%E2%80%9D
https://www.uber.com/en-IT/blog/microservice-architecture/#:~:text=In%20other%20words%2C%20as%20Uber,it%20difficult%20to%20operate%20independently
https://blog.quastor.org/p/github-shifted-monolith-microservices#:~:text=How%20GitHub%20shifted%20from%20a,to%20be%20immediate%20or%20rapid
https://www.linux.com/news/the-state-of-the-art-of-microservices-in-2020/#:~:text=solutions%20to%20solve%20new%20challenges,numbers%20of%20users%20in%20technology
https://www.theregister.com/2020/05/20/microsoft_openai_supercomputer/#:~:text=Microsoft%20claims%20it%20has%20spun,connectivity%20for%20each%20GPU%20server
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Prime%20Video%2C%20Amazon%E2%80%99s%20video%20streaming,decided%20to%20consolidate%20all%20of
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=different%20ECS%20tasks%20to%20avoid,hitting%20vertical%20scaling%20limits

These honorable mentions and others each contribute further nuances – from unique domain
requirements to evolutionary lessons – that continue to enrich the landscape of high-scale system
architecture.

33

Why Amazon Retail Went to a Service Oriented Architecture - High Scalability -
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/

4 Microservices Examples: Amazon, Netflix, Uber, and Etsy
https://blog.dreamfactory.com/microservices-examples

Migration Complete – Amazon’s Consumer Business Just Turned off its Final Oracle Database
| AWS News Blog
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-
database/

Best of 2023: Microservices Sucks — Amazon Goes Back to Basics -
DevOps.com
https://devops.com/microservices-amazon-monolithic-richixbw/

Facebook PHP with Keith Adams - Software Engineering Daily
http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/

Facebook Open Sources Data Query Language GraphQL - InfoQ
https://www.infoq.com/news/2015/10/graphql-your-schema/

Insights from Paper-TAO: Facebook’s Distributed Data Store for the Social Graph |
by Hemant Gupta | Medium
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-
graph-48446205ba28

TAO: The power of the graph - Engineering at Meta
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/

Under Deconstruction: The State of Shopify’s Monolith - Shopify
https://shopify.engineering/shopify-monolith

research.google.com
https://research.google.com/archive/spanner-osdi2012.pdf

Google Architecture - High Scalability -
https://highscalability.com/google-architecture/

Service Fabric Architecture - Azure - Learn Microsoft
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture

PayPal’s Microservices Architecture Journey | by Aparna Rathore | Medium
https://rathoreaparna678.medium.com/paypals-microservices-architecture-journey-bee3cd8b0b28

Introduction to microservices on Azure - Azure Service Fabric
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices

The Scaling Journey of LinkedIn - ByteByteGo Newsletter
https://blog.bytebytego.com/p/the-scaling-journey-of-linkedin

How Slack Supports Billions of Daily Messages
https://blog.bytebytego.com/p/how-slack-supports-billions-of-daily

Introducing Domain-Oriented Microservice Architecture | Uber Blog
https://www.uber.com/en-IT/blog/microservice-architecture/

The state of the art of microservices in 2020 - Linux.com
https://www.linux.com/news/the-state-of-the-art-of-microservices-in-2020/

Stripe Blog: Engineering
https://stripe.com/blog/engineering

1 2 6 66 67

3 13 14 15 20 56 57 58 68 69

4 5 12

7 8 9 10 11 16 17 18 19 77

21 24 25

22 23

26 27 28 31 32 33

29 30 36 37 38

34 35

39 40 41 42 43 44 45

46 47 48 63

49 50 54 55

51 52 74

53

59 60 61

62 70 71

64 65

72

73

34

https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=Amazon%20was%20running%20into%20the,in%20the%20same%20code%20base
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=The%20solution%3A%20move%20to%20a,not%20microservices
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=,Amazon%E2%80%99s%20Deployment%20Engine
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=scaling%20the%20number%20of%20engineers,in%20the%20same%20code%20base
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/#:~:text=Organizing%20around%20services%20allowed%20individual,bottom%20responsibility%20for%20the%20functionality
https://highscalability.com/why-amazon-retail-went-to-a-service-oriented-architecture/
https://blog.dreamfactory.com/microservices-examples#:~:text=Amazon%E2%80%99s%20%E2%80%9Cservice,Without%20its%20transition%20to
https://blog.dreamfactory.com/microservices-examples#:~:text=In%202009%2C%20Netflix%20began%20the,Netflix%20spent%20the%20following%20two
https://blog.dreamfactory.com/microservices-examples#:~:text=match%20at%20L365%20Refactoring%20to,architecture%20consisted%20of%20over%20700
https://blog.dreamfactory.com/microservices-examples#:~:text=Refactoring%20to%20microservices%20allowed%20Netflix,and%20it%20continues%20to%20grow
https://blog.dreamfactory.com/microservices-examples#:~:text=According%20to%20a%20Netflix%20vice,president
https://blog.dreamfactory.com/microservices-examples#:~:text=To%20overcome%20the%20challenges%20of,microservices%20via%20an%20API%20gateway
https://blog.dreamfactory.com/microservices-examples#:~:text=,days%20could%20not%20ship%20DVDs
https://blog.dreamfactory.com/microservices-examples#:~:text=Previously%2C%20Amazon%20found%20that%20the,obvious%20drops%20in%20productivity%2C%20it
https://blog.dreamfactory.com/microservices-examples#:~:text=First%2C%20they%20analyzed%20the%20principles,including%20webpage%20views%20and%20searches
https://blog.dreamfactory.com/microservices-examples#:~:text=According%20to%20Fowler%2C%20developing%20and,and%20like%20it%2C%E2%80%9D%20Fowler%20said
https://blog.dreamfactory.com/microservices-examples
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/#:~:text=We%20migrated%2075%20petabytes%20of,and%20realized%20the%20following%20results
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/#:~:text=databases%20to%20multiple%20AWS%20database,This%20includes%20complex
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/#:~:text=databases%20to%20multiple%20AWS%20database,and%20realized%20the%20following%20results
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Prime%20Video%2C%20Amazon%E2%80%99s%20video%20streaming,decided%20to%20consolidate%20all%20of
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=The%20problem%20of%20high%20operational,avoid%20hitting%20vertical%20scaling%20limits
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Horse%E2%80%99s%20mouth%3F%20Marcin%20Kolny%2C%20a,scale%2C%20resilience%2C%20and%20reduce%20costs%E2%80%9D
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=We%20realized%20that%20distributed%20approach,a%20different%20subset%20of%20detectors
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Jumping%20in%2C%20Amazon%20CTO%20Dr,mee%20eens%E2%80%94%E2%80%9CMonoliths%20are%20not%20dinosaurs%E2%80%9D
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=Is%20this%20an%20Amazon%20PR,can%E2%80%99t%20make%20sense%20of%20serverless%E2%80%9D
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=context%2C%20and%20wreaked%20havoc%20once,many%20times%20you%20kill%20them
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=%E2%80%9C,was%20adopted%20outside%20its%20original
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=application%20architectures,many%20times%20you%20kill%20them
https://devops.com/microservices-amazon-monolithic-richixbw/#:~:text=different%20ECS%20tasks%20to%20avoid,hitting%20vertical%20scaling%20limits
https://devops.com/microservices-amazon-monolithic-richixbw/
http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/#:~:text=Facebook%20chose%20to%20scale%20its,slowed%20down%20the%20entire%20company
http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/#:~:text=The%20Hip%20Hop%20Virtual%20Machine,as%20a%20dialect%20of%20PHP
http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/#:~:text=without%20going%20through%20a%20painful,slowed%20down%20the%20entire%20company
http://softwareengineeringdaily.com/2019/07/15/facebook-php-with-keith-adams/
https://www.infoq.com/news/2015/10/graphql-your-schema/#:~:text=,our%20REST%20resources%20well%20isolated
https://www.infoq.com/news/2015/10/graphql-your-schema/#:~:text=Feed%20stories%20,networks%20led%20us%20to%20GraphQL
https://www.infoq.com/news/2015/10/graphql-your-schema/
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20runs%20on%20thousands%20of,millions%20of%20writes%20per%20second
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=Facebook%20used%20memcache%20as%20a,graph%20before%20TAO%20was%20implemented
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20still%20uses%20MySQL%20for,aware%20cache
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=Facebook%20has%20deployed%20a%20single,data%20set%20of%20many%20petabytes
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=Insights%20from%20Paper,geographically%20distributed%20instance%20of%20TAO
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28#:~:text=TAO%20still%20uses%20MySQL%20for,geographically%20distributed%20instance%20of%20TAO
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28
https://hemantkgupta.medium.com/insights-from-paper-tao-facebooks-distributed-data-store-for-the-social-graph-48446205ba28
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=The%20use%20of%20memcache%20vastly,value%20pairs%20derived%20%28some%20indirectly
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=consistency,In
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=All%20those%20problems%20could%20be,its%20design%2C%20let%E2%80%99s%20quickly%20go
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=product%20engineers%20had%20to%20write,most%20of%20the%20common%20chores
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/#:~:text=efficiently%20as%20a%20data%20store,Facebook%E2%80%99s%20%E2%80%9Cmove%20fast%E2%80%9D%20development%20philosophy
https://engineering.fb.com/2013/06/25/core-infra/tao-the-power-of-the-graph/
https://shopify.engineering/shopify-monolith#:~:text=Shopify%E2%80%99s%20core%20monolith%20has%20over,bounded%20way
https://shopify.engineering/shopify-monolith#:~:text=That%E2%80%99s%20why%2C%20over%20three%20years,The%20vision%20went%20like%20this
https://shopify.engineering/shopify-monolith
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=synchronously,1%20Introduction
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=Spanner%20is%20a%20scalable%2C%20globally,servers%20changes%2C%20and%20it%20automatically
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=synchronously,changes%2C%20across%20all%20of%20Spanner
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=shards%20data%20across%20many%20sets,even%20across%20datacenters
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=even%20in%20the%20face%20of,1%20or%202%20datacenter%20failures
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=initial%20customer%20was%20F1%20,1%20or%202%20datacenter%20failures
https://research.google.com/archive/spanner-osdi2012.pdf#:~:text=Spanner%20is%20a%20scalable%2C%20globally,even%20across%20datacenters
https://research.google.com/archive/spanner-osdi2012.pdf
https://highscalability.com/google-architecture/#:~:text=Update%3A%20Greg%20Linden%20points%20to,8%20GB%20of%20memory
https://highscalability.com/google-architecture/#:~:text=100,8%20GB%20of%20memory
https://highscalability.com/google-architecture/#:~:text=2,URLs%2C%20hundreds%20of%20terabytes%20of
https://highscalability.com/google-architecture/#:~:text=sophisticated%2C%20and%20fast%20searching%2C%20but,How%20do%20they%20do%20that
https://highscalability.com/google-architecture/
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=Service%20Fabric%20Architecture%20,to%20build%20scalable%2C%20reliable%2C
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=In%20a%20distributed%20system%2C%20the,subsystem%20also%20underlies%20the%20hosting
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=provides%20secure%20communication%20between%20nodes,of%20an%20application%20on%20a
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#:~:text=entity%20,and%20after%20deploying%20applications%20and
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture
https://rathoreaparna678.medium.com/paypals-microservices-architecture-journey-bee3cd8b0b28#:~:text=,Boot%2C%20Docker%2C%20Kubernetes%2C%20and%20more
https://rathoreaparna678.medium.com/paypals-microservices-architecture-journey-bee3cd8b0b28#:~:text=,streamline%20communication%20between%20various%20microservices
https://rathoreaparna678.medium.com/paypals-microservices-architecture-journey-bee3cd8b0b28#:~:text=,agility%2C%20scalability%2C%20and%20development%20speed
https://rathoreaparna678.medium.com/paypals-microservices-architecture-journey-bee3cd8b0b28
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices#:~:text=Fabric%20learn,upon%20standards%20for%20communication
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://blog.bytebytego.com/p/the-scaling-journey-of-linkedin#:~:text=Many%20of%20the%20applications%20at,blog%20posts%20and%20so%20on
https://blog.bytebytego.com/p/the-scaling-journey-of-linkedin#:~:text=To%20mitigate%20this%20issue%2C%20LinkedIn,concept%20of%20a%20super%20block
https://blog.bytebytego.com/p/the-scaling-journey-of-linkedin#:~:text=,with%20more%20than%204000%20brokers
https://blog.bytebytego.com/p/the-scaling-journey-of-linkedin
https://blog.bytebytego.com/p/how-slack-supports-billions-of-daily#:~:text=,logic%2C%20storage%2C%20and%20user%20auth
https://blog.bytebytego.com/p/how-slack-supports-billions-of-daily#:~:text=Image
https://blog.bytebytego.com/p/how-slack-supports-billions-of-daily#:~:text=The%20monolith%2C%20written%20in%20Hacklang%2C,session%20management%20to%20API%20endpoints
https://blog.bytebytego.com/p/how-slack-supports-billions-of-daily
https://www.uber.com/en-IT/blog/microservice-architecture/#:~:text=At%20Uber%2C%20we%20adopted%20a,operational%20issues%20that%20microservices%20solve
https://www.uber.com/en-IT/blog/microservice-architecture/#:~:text=In%20other%20words%2C%20as%20Uber,it%20difficult%20to%20operate%20independently
https://www.uber.com/en-IT/blog/microservice-architecture/
https://www.linux.com/news/the-state-of-the-art-of-microservices-in-2020/#:~:text=solutions%20to%20solve%20new%20challenges,numbers%20of%20users%20in%20technology
https://www.linux.com/news/the-state-of-the-art-of-microservices-in-2020/
https://stripe.com/blog/engineering#:~:text=Ledger%3A%20Stripe%E2%80%99s%20system%20for%20tracking,and%20validating%20money%20movement
https://stripe.com/blog/engineering

How GitHub shifted from a Monolith to Microservices - Quastor
https://blog.quastor.org/p/github-shifted-monolith-microservices

Microsoft claims it has spun up a top-five AI supercomputer for its ...
https://www.theregister.com/2020/05/20/microsoft_openai_supercomputer/

75

76

35

https://blog.quastor.org/p/github-shifted-monolith-microservices#:~:text=How%20GitHub%20shifted%20from%20a,to%20be%20immediate%20or%20rapid
https://blog.quastor.org/p/github-shifted-monolith-microservices
https://www.theregister.com/2020/05/20/microsoft_openai_supercomputer/#:~:text=Microsoft%20claims%20it%20has%20spun,connectivity%20for%20each%20GPU%20server
https://www.theregister.com/2020/05/20/microsoft_openai_supercomputer/

	Technical Architecture Analyses of Major Tech Companies
	Amazon
	System Overview
	High-Level Architecture
	Technology Stack
	Data Architecture
	Scalability and Resilience
	Security Architecture
	Evolution and Tradeoffs

	Netflix
	System Overview
	High-Level Architecture
	Technology Stack
	Data Architecture
	Scalability and Resilience
	Security Architecture
	Evolution and Tradeoffs

	Meta (Facebook)
	System Overview
	High-Level Architecture
	Technology Stack
	Data Architecture
	Scalability and Resilience
	Security Architecture
	Evolution and Tradeoffs

	Google
	System Overview
	High-Level Architecture
	Technology Stack
	Data Architecture
	Scalability and Resilience
	Security Architecture
	Evolution and Tradeoffs

	Microsoft Azure
	System Overview
	High-Level Architecture
	Technology Stack
	Data Architecture
	Scalability and Resilience
	Security Architecture
	Evolution and Tradeoffs

	Comparative Analysis
	Honorable Mentions

